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1. Introduction. Let y(n) denote the largest square-free divisor of n and
for n>2, P(n) denote the largest prime divisor of n. In response to a
suggestion of P. Erdds, G. J. Rieger (see [5] and also [6], p. 85) proved tha
as x — oo :

" loglog x
d — =1
b 2<nsx Nlogy(n) og10gx+c+o( log x >
(1:2) - = ¢' log log x+ O (log log log x)

24ngx nlog P (n)

where C is a constant and y denotes the Euler constant. G. J. Rieger [5] also
mentions that (1.1) with a weaker remainder term and (1.2) as it stands were
also stated independently by P. G. Schmidt. In recent times sums involving
the function P(n) have been investigated extensively (see for instance, N. G.
De Bruijn [1], J. M. De Koninck and A. Ivié [2] and A. Ivi¢ [4]).

The purpose of this paper is to sharpen the results (1.1y and (1.2
considerably. In fact we prove ' :

THeOREM 1.1, For each positive integer k, there exist constants b,
bl’ vy bk"'l such that

1 = loglog x+ Y, L +0 (( )¢ ) '

2€nsx nlogy(n) m=0 (lOgX)m logx

1
THEOREM 1.2. ,<Z<.mn oz PO

= e’ loglog x+ O(1).

In Section 2, we prove a general result for a wide class of arithmetical
functions of which Theorem 1.1 will be a simple consequence. Our attempts
to sharpen Theorem 1.2 still further were not successful. -

* On leave from Andhra University, Waltair, India.
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~ 2. Proof of Theorem 1.1. First we prove a general result. Let r be an
integer > 2. A positive integer n is called r-free if n is not divisible by the rth
power of any prime. A positive integer n is called r-full if p|n, p a prime
implies p'|n. Let Q, (respy. L,) denote the set of all r-free (respy. r-full)
integers. Let g, (respy. 1) denote the characteristic function of Q, (respy. L,).
Further, let {(s) denote the Riemann zeta function, w(n) the number of
distinct prime factors of n and y, be the generalized Dedekind y-function of
order r defined by

. ) )
r—1

21 Y (n) = n[] (
pin
where the product extends over all distinct prime factors of n.
Let S, denote the class of all multiplicative arithmetical functions f
satisfying

2.2) fE™=p" for 1<ms<r—1
and
(2.3) S =pt for mzr

and all primes p.
Let T, denote the class of all bounded arithmetical functions y satisfying
(2.4) x(mn) = y(m) whenever (m,n) =1 and neQ,.
Further let 4 be a real with ~1/r £ 4 <0 and define F: [4, 0]+ C by
| & 2 b en !y

@S i i E

for f €8, and ye T, NVergonc eries ¢ roved
in Lemma 2.3 below , ‘ e .

TuroreM 2.1, Let feS, and yeT,. Then for each fixed ¢ >0 and as
X = OC

2 X ( F(f)X'f'O ( 1+(l-—l)/r+z)
1&ns%x

uniformly for te[4, 0].

The proof of Theorem 2.1 is based on the followmg three lemmas.

Lemma 2.1 (cf. [7], Lemma 2).

2 a.(m) +0,(0(n)x'")

_ nx
m<x, B C(")Wr(n)

{(mmn)=1

uniformly in x> 1 and n> 1. Here 0(n) = 2°®,
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LimMma 2.2,
" nxitt
iq.(mm' 0(n) peRSVC
m%\ ’ {C) U, () (+1) 1) ( )
(ht ) = |

unfformly in x 21, n> 1 and te[A, 0].

Proof. This follows from Lemma 2.1 and the ‘theorem of partial
summation.

Limma 2.3, Let feS,. Then for each fixed ¢ >0 and as x — oo

20 5 L0)(f ("1 = 0, (x1- P+,
-1 t
(270 Z ,{’m(ﬁ)w(fin)n ) = Oa’r(x—(r—1+l)/r+5)
and
1 o
(218} z 1 (n)(fE::)n .“)._ =‘08»’r(x-—2./r+6) ‘
HE ¥ h

noe | € we have by (2.3)

p(r (¥ p» b )

R <re 2merdymt

< p*(lﬂb-w)(lwz"(e%-r"z))—l :
on noting that ras A #14r anx:i |

Hence the infinite product

f1fis £ U002 )}

m=y

and consequently the series
2 Lm(fmnY
:‘: n*

converge.

\



4 J-M. De Koninck and R. Sitaramachandrarao

Further by (2.9)

o ,411 [+ 9] 4
LR P T T T I RS
n=1 ; p m=r ‘ ?

Hence

Y Ly i<, 1
uniformly for te[4, 0] and (2.6), (2.7) and (2.8) follow by the theorem of
partial summation.
Now we are in a position to give a proof of Theorem 2.1.
Each positive integer n can be written uniquely as n=4do, (d,0) =1
where deQ, and éeL,. Hence by (2.2) and (2.4) '

Soam(re) = Y 2@ (@) (fO) a.d)1©)

a5
= ¥ x(dd)d(f©) q.(d)1,(0)
((;‘.‘js)i;-xl :
=Y 1OLOUE) Y a@d
d€x (fll,g))lél
SIRIC7 ( (x>1”+‘>}
= 1 0,,(00)(%
Zxob0l0) e ergon (00 ;

XU @ @ L (f e

N C(r) (t + 1) ngl Wr(")

N1y “(myn~ 1Y
+0 <x‘ Y ,{'M[%LLL)»F 0. ( X!t U ,?;x ﬁdﬂlﬁ%%l)

where in the above we used Lemma 2.2 and the fact that y is bounded and
Y,(n) = n for all n. Now Lemma 2.3 completes the proof of Theorem 2.1.

Tueorem 2.2. Let feS, and yeT,. Then as x — o©
' 0

o fF(t)dt+[O(x3/4+s) Jor r=2,

0,(x* "y for r=3

2.10 e =
( ) 2<§<x log f(n) ,
‘ ~ 1/
and in particular, for each positive integer k
X(") B k-1 (__l)mNIG(m—l)(O) ( X
[t L 0\ logy

2.11) y

2€nsx logf(n) B xm==l (l()g x)m
where for te[—1/r, 0]
(2.12) G(t)y=x""F(1).
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Further, for each positive integer k, there exist constants bo, by, ..y by
such that ' '

' x(n) kelop
(2.13) D, e = G(0) log lo - ( X
By nlog [y = COogloEx+ 3 G40 (g
where the order constant depends on parameters other than x.

Proof. The method of proof is similar to the one first used by J. M. De
Kor_upck and J. Galambos [3] to estimate sums of reciprocals of certain
additive functions. First, from Theorem 2.1, we get

Q . 0 _ e 0
oatn [ (fe)di=x [ Fde+0(imarimse gy
285X “ /¢ —‘l/r ""l/r ’
(2.14) e | -
KL"L = x f F(t)dt + 0 (xtmam+nvey M
2€nsy lng (”) ’ L 2€nsx logf(n) )

- 1fr . .
Since y is bounded and f(n) > 2 for all n> 2, we have

X)) "
« < S
Itnsx logf(n)" 2szn:sx(f(n))“ , ,
Aggiu by Theorem 2.1, (with the function x(n) =1 for all n,t = A= —1/r)
and the theorem of partial summation ,
3 & 2 (‘f(n))“’ lr & x! 1/r+x% Lrt (U (1 l/r+e)kk L xl-Ur
Idngx

so that (2.10) follows from (2.14).
Now to prove (2.11), consider

oy
*
A=

0 0 0 ’
. . t 0 t
[me= fxcmm=XGm ';‘[xamm
. , og X |-y - logx
=1 “Lfr ~1/r ’

0
_GO) G(~1/n S xG(1)
Tlogx x"logx dt
gx x'logx log x
—1/r

_ G(O) 3 G(.,l)(O) (_ l)k— 1 G(k— 1)(0)

“logx (logx‘)2 (log x)*
1 {G(—l/r)_G(”(—l/r) ' +(“UkﬂG(k“”(‘—l/r)
- xM ) log x (logx)? 7 (log x)*
. . ' (V]
1k " x'G6W ()
~1fr v
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Since

® (¢
J (1G W at < (og 9~
- 1/r

(2.11) follows from (2.10).

Finally (2.13) follows from (2.11) by parttal summation. Thls completes
the proof of Theorem 2.2.

Now we deduce Theorem 1.1 from Theorem 2.2. First note that by
Euler’s infinite product factorization theorem

1 L) 1 1 1
ga)Eiwxm"amI}lL+Mp+n+p%p+n+f}

1 ' 1
-z I gromi) !

Hence on taking r = 2, f(n) = y(n), the largest square-free divisor of n and
x(n) =1 for all n in Theorem 2.2, equation (2.13), we obtain Theorem 1.1.
' As another application of Theorem 2.2, we have

CoRrOLLARY 2.1. Let r, s be integers satisfying 2 <r

< s and v,(n) denote

the largest r-free divisor of n. Then, for each positive integer k, there exist

constants dy, dy, ..., d;_y such that as x — ©

80 _ L jogiogxt Y i iso (o )
2 & nlogn () L X, fogor O\ g )

Proof. In Theorem 2.2, equation (2:13), we take f(n) = 7,(n), x(n)
= ¢,(n) and note that in this case ’

1 &1 s (7
o0-ro-gi; 5 Ut

This completes the proof of Corollary 2.1.
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3. Proof of Theorem 1.2. For x> 1 and y > 2, let y(x, y) denote the
number of positive integers < x all of whose prime factors are < y. Then it

is known due to De Bruijn (cf. [1], (1.9)) that there exist positive constants A4
and B such that for all x and y

(3.1 W(x, y) < Ax exp {—(Blog x/log v)l
Now clearly we have
' 1 1 1 1 1
(32) . —_— = — - = S -
2$§<x l’llOgP(l’l) psx Ing néx n pPsx ]ng png.\c pm
P(my=p Py p
1 1
pPEXx plogp m<x/p m
Pm<p
1 1 1 I

psx plng m m psx p]ng mg;c/p m
Pim)<p Pm)y<p

= Z‘1 '_22:
say. By Mél’t@ﬁﬁ‘ theorem in the distribution of primes, we have

5 k| -y -1
( ) % m (l;alp < Q) {l()g[) 0 <l0g2[’>} = logp+0(1)

Py £ p qplhm
%0 that

(3.4 I = (e’log p+0(1)) = e’ log log x+ O (1).

psx plng

The estimation of X, is done via partial summation and (3.1). In fact

f!//(t P, )

(3.5) 5= Y — (

2<p<x Plogp L
: x/p
1 —{(Blogt/log p)
< Z (1 -+ f——————e dt>
25psx P logp t
x/p

1 dt 1 [\~ Blogp
<1+
pgxplogp /f PRI b+ %x p({))
A ;

1 1o ’
<1+ Z eBlogx/logp< + Z - m“%"’i@

Now the theorem follows from (3.2), (3.4) and (3.5).
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