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The distribution of the average prime divisor of an integer 

By 

JEAN-MARIE DE KONINCK and ALEKSANDAR IVI~ 

1. Introduction. Let us usual ~o(n) and (~(n) denote the number of distinct prime 
divisors and the total number of prime divisors of n respectively, and let P (n) denote the 
largest prime factor of n => 2. One may define the average prime factor of n as 

/~(n) 
(1.1) P , ( n ) -  fl(n) = 52p, co(n)' pl. 

B(n) 
(1.2) P*(n) - szt )'-"n" B(n) = 52 ~p, 

p~ll, 

where as usual p~ II n means that p~ divides n (p prime), but p~+ 1 does not. Thus one may 
consider P, (n) as the average of distinct prime factors of n, while P* (n) is the average of 
all prime factors of n, counted with their respective multiplicities. The functions fl(n) and 
B (n) are additive, and they are "large" in the sense of Chapter 6 of [4]. Problems involving 
fl(n) and B(n) have attracted much attention in recent years. Thus in [1] K. Alladi and 
P. Erdrs showed 

(1.3) • P ( n ) ~  Y'. f l (n )~  Z B(n) 
2<_n<_x 2<n<=x 2<n<_x 

while P. ErdSs and A. Ivi6 [6] showed that 

g2X2 

12 log x' 

(1.4) 2_<,_<~Z P ( n ) -  X + O , 2<_,<_x52 P(n) x + O , 

and A. Ivi6 and C. Pomerance [10] proved a sharp asymptotic formula for the summatory 
function of B (n)/fl (n). Further results involving various estimates with P (n), fl (n) and B (n) 
are to be found in [3]-[10], and the purpose of this note is to sharpen (1.3) and to prove 
an asymptotic formula for the summatory function of P,(n), P*(n) and P,(n)/P*(n). The 
results are contained in 

Theorem 1. For each f ixed natural number m there exist computable constants 
d 1 = ha/12, d2,. . . ,  d m such that 

2_<,_<~ \ l ogx  1 o g 2 x  " ' "  + va~, ~ + logm+l x 

and the formula remains true if P(n) is replaced by fl(n) or B(n). 
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Theorem 2. For each f ixed natural number m there 

e l ,e2 , . . . ,  e,., f i , f 2  . . . .  ,fro such that 0 < .]'1 < el and 

exist computable constants 

2 < _ n < x  \ l o g x  + ~ + "'" + l o g ' ~  + 0 ]og~-+l x , 

(1.7) 2<_~<_xP*(n)=x2 + l o ~  + ... 1ogmx iogm-+ i x �9 

Theorem 3. For each f ixed natural number m there exist computable constants 9 i , . . . , gm 
such that 

(1.8) 2_<,_<xZ P * ( n ) -  x + \ l o g l o g x  + ' ' "  -~ ( loglogx) m + O ( loglogx) m+~ ' 

The notation used throughout  is standard: p, q always denote primes, a l b means that 
a divides b, f ( x )  = O(9(x)) and f ( x )  ~ 9(x) both mean If(x)l < Cg(x)  for x > x o and 
some C > 0. 

2. The necessary lemmas. In this section we present some lemmas which are necessary 
for the proofs of our theorems. These are 

Lemma 1. For each f ixed natural number m there exist computable constants c 1 = 1/2, 
c2, . . . ,  % such that 

. . ( 1 ) )  
(2.1) Z P = \ l o g x  + + "'" + + O . p-<x ~ ~ log ~-+lx 

Lemma 2. For each f ixed  pair of  natural numbers m, i there exist computable constants 
Co, i = 7c2/6, el, i . . . . .  Cm, i such that 

1 cod ci'i + -~ ' t- 0 . 

Lemma 3. Let f (n) > 0 be an arithmetical function such that f (n) ~ log n. Then for any 

f ixed A > 0 

(2.3) ~ f (n )  f l (n)= Z f (n )  P(n) + O ( x Z l o g - a + l x  loglogx) ,  
2 < n < _ x  2<_n<_x 

(2.4) Z f (n )  B(n) = Z f (n )  P(n) + O(x21og-A+lx loglogx).  
2 < n < x  2 <-n <-x  

The proof of Lemma 1 is obtained by partial summation from the prime number 
theorem, while Lemma 2 follows by applying standard techniques from analysis. For  
Lemma 3 it is sufficient to prove (2.4) only, since the proof of (2.3) is quite similar. Write 

Z f (n )  B ( n ) = S  l + S 2 ,  
2 < n < x  
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say, where in S 1 the summation is over n < x for which P(n) < nlog-An, and in S 2 over 
the remaining n. Using 

B(n) = Y~ ~p < P(n) E ct = P(n) f2(n) 
v~ll, p~ll, 

and the elementary estimate 

we obtain 

Z f2(n) ~ xloglogx,  
n < x  

S 1 ~ ~, P(n) f2(n) logx  ~ x log-A+lx  ~ f2(n) 
P(n)<n log-  An,  n < x  n< x 

x 2 log-  a + 1 x loglog x. 

Consider now $2 and suppose q~ II n, q < P(n). Then 

q~'n log-An < q~' P(n) < n, 

which gives ~ q < q~ < log an. Therefore 

$2= Z f(n) P(n) + O(x210g-a+lx loglogx) 
2<_n<_x 

+ 0 ( ~ log n ~, 7q) 
n < x q~ [[ n, q~ < logAn 

= Z f(n) P(n) + O(x21og-Z+lx log logx)  + O(loga+lxS~to(n)) 
2<n<--x n < x  

= ~ f(n) P(n) + O(X21Og-A+lX 1oglogx).  
2 < n < x  

3. Proof  of theorems. First we present the proof  of Theorem 1. Observe that by Lemma 3 
withf(n) = 1 and A = m + 3 it is seen that (1.5) does indeed hold i fP  (n) is replaced either 
by fl(n) or B(n). To prove (1.5) write 

(3.1) • P(n)= E p =  Zp~(x /p ,p) ,  
2<-n<-x pm<=x,P(m)<p p < x  

where 
~k (x, y) = bZ 1 

n < x ,  P(n)<y 

is the function which represents the number of n < x for which P (n) < y, and furthermore 
~b (x, y) = [x] if y >_ x, while for 1 < y < x various useful estimates for ~b (x, y) exist in the 
literature (e.g. see [2]). But we have 

(3.2) Z pO (x/p, p) = Z p4, (x/p, p) + Z p~ (x/p, p) 
p<=x p<=l/~ l/~<v<-_~ 

= 0 (  x3/2)+ E p[x/p] = Z P + O(x3/2), 
Vx<p<=x pn<=x 

since ~ (x/p, p) = [x/p] for p > ~#x. Observing that (2.1) remains true if loglx (i = 1, . . . ,  
m + 1) is replaced by log i (x + 1), we obtain then by using Lemma 2 
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(3.3) ~ , P =  2 32 p =  \ l o g x + " "  + O  , 
pn<=x n<=x p<x/n log m X iog~-+ 1X 

and Theorem 1 follows now easily from (3.1), (3.2) and (3.3). 
For  the proof of Theorem 2 we remark that by Lemma 3 (with A = m + 2) it will be 

sufficient to prove the corresponding asymptotic expansions for 

(3.4) 2 P(n) /co  (n), E P (n) / f2(n) .  
2 < n < x  2<n<--x 

In both sums in (3.4) we may suppose that P (n)[I n, since 

Y P(n)/co(n)<= ~ P ~ p Z  + , ~ x l o g l o g x .  
2<n<=x,  P2(n)[n p 2 m < x  _ 

Also by the argument used in the proof of Lemma 3 we may suppose that P (n) e I, 
where 

I = [ n l o g  m 2n, n]. 

Therefore if Z* denotes summation over those n for which P (n) [I n and P (n) ~ I, then 

(3.5) 22" _e (n) ~1 , 1 -22 <_ Y~ e ( n ) = ~ S  k(x), 
n.<x  ( . 0 ~ )  k n _ x ,  ro(n)=k 

where k takes at most 0 (log x/log log x) values. Using Lemma 1 we have 

Sl (x)=  Z P + O ( x  2 1 0 g - m - z x ) = x  2 + . . . + ~ + 0  l o g -  + ix  ' 
p < x  

while for k > 2 

(3.6) Sk (x) = 22* P (n) = Y~ p 
n< x ,  co(n)=k p~l  . . .  p ~ k - l l  p <  x ,  p e I  

p l <  . . .  < p k - l < p  

= Z E p. 
p~l ... p~k 51 < ~ p~_ , < p<= xp;-~l ... v2:_~ - ,, p~I 
Pl  < . . .  < P k - 1  

To estimate the inner sum above we shall use Lemma 1. The contribution of those 
primes for which p < P k -  1 is small, since P (n) = p ~ I implies P k -  1 <= log m + 2 n, hence 
trivially 

~, p ~ l o g 2 m + 4 x ~ l  ,~xlog2m+4x, 
~1 p~k_-ii < x P<--Pk-1 n<--x Pl  " ' "  -- 

Pl  < . . .  < P k  l < l O g  m + 2 t l  

and this estimate is uniform in k, so that summation over k in (3.5) will produce an error 
term which will certainly be O (x z l o g - " -  ~ x). Thus using Lemma 1 we see that the main 
contribution to Sk(X ) will be 

(3.7) x e ~,  p~ z ~ . . . p k - ~  ~__~ cilog -~ -- + , 
d~. . .  ,~_51 _<_ ~ p ~ . . .  p~_-f 
Pl  < - . -  < P k - I  
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and further we obtain 

(3.8) ~ p12~"...pk-_2~"-l log-i ( x + 1) 
. : ' . . . . ~ - v  ~ x p ] l - . . p ~ - - ~ '  

P l  "< . - .  < P k - 1  

-- .oglx + - -  + . . .  + - -  + 0 - -  log i+lx  log/+" x iogi+-m+ 1 x 

for some suitable constants go(i, k) . . . .  , gin(i, k). In fact for 
(j = 0, 1 . . . .  , m) we have 

(3.9) 9j( i ,k)= Z h(i'j) l~ ( l o g f x )  
d<=x, co(a)=k- 1 d 2 q'- O , 

some constant h (i, j) 

where the O-constant is uniform in k. F rom (3�9 we obtain then (1.6) with some 
computable  constants e 1, e2, . . . ,  e,,, since for each j 

k ~ g j ( i , k )  h(i , j) l~ ( logJx  log log x )  
Z = Z  d 2 + O  k>2 , ~  (co(d) + 1) x 

�9 . log d logJx 1 g log  x 
= hO,  j ) d Z  + 0 - , 

and by collecting various terms of the form x21og- tx  (t = 1, 2, . . . ,  m) we obtain (1.6). 
The proof  of (1.7) is completely analogous to the proof  of (1.6) and this therefore 

omitted, but note that  we obtain 0 < f l  < el, which means that the average order of P. (n) 
is larger than the average order of P* (n). 

As for Theorem 3, it may be noted that  using the method of proof  of Lemma 3 it is 
sufficient to estimate 

(3.10) E* P, (n)/P* (n) Z*  s (n) P (n) = - -  + O(x l o g - a x ) ,  
,<=x ,<=x co(n)B(n) 

since 

(3.11) ~ 1/B(n) = x exp {--(210gx log logx) 1/2 + O ((logx log log log x)1/2)}, 
n<x 

as proved in [9]. Here 52* denotes summation over n < x such that  P (n) iI n and P (n) ~ 1 
= [n log a n, hi, where A > 0 is a sufficiently large constant�9 The condition P(n)~ I 
implies q < logan i fq  ~ I1 n, q < P(n), so that  in Z *  in (3.10) one may  also replace B(n) by 
P (n) with a manageable  error, since using (3.11) we have 

~2" ~2 (n) _ E*  f2 (n) P (n) 
,<=x co(n) ,<=~ co(n)B(n) 

1 
,~ log x 5__< ~ ~q 

2 x B ( n )  q~lln, q<efn),q<log-4n 

1 
"~ log a+2x ~2 - - , ~  x I og -Ax .  

2__<,__<xB (n) 
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Thus all we are left with is the sum of quotients of 0 (n) and co (n), i.e. 

Z* O(n)/co(n) = Z O(n)/co(n) + O(x log l -Ax)  
n < x  2 < n < - x  

\ l og  log x (log log x)" + O log log x) m + ; , 

if A > 1, when one used the asymptotic formula (4.3) of [4]. This proves Theorem 3. 

4. Remarks. Instead of summing P,  (n) or P* (n) one may sum their reciprocals, and this 
was investigated in [7] and [8]. In that case one has, following the proof of (1.7) in [8], 

1 co(n) '1" f log x ~1/2 1 
2 - ~< - (x/2 + ot  )) ~ loglog ~ - ' 2z._<xP,(n) 2=<.=xfl(n) x/l 2__<,~xfl(n) 

1 ~ O(n)_( /~+x/z  .. . .  f logx  "~1/2 1 

while 

1 
- xexp{--(210gxloglogx)l /2 + O((logxlogloglogx)l/2)}. 

The last formula was proved in [9] and sharpened in [10]; the result remains true if fl (n) 
is replaced by P(n) or B(n) (see (3.11)). 

We may also remark that (1.8) (with possibly different 9{s) remains true if the left-hand 
side is replaced by Z P*(n)/P,(n). This follows from the fact that an asymptotic 

2 < n < x  

formula for Y~ co (n)/O (n), analogous to (4.3) of [4] also holds, and may be established 
2<_n<_x 

by the same method of proof. Also the function on the right-hand side of (1.8) could be 
replaced by a more precise expression if instead of (4.3) of [4] one uses the more refined 
estimate for Z f2 (n)/co (n), proved in chapter 5 of [4]. 

2 < n < x  

The method of proof of Theorem 2 could be also used to yield estimates of the type 
(1.6) and (1.7) for the more general sums Z f(n)P(n), wheref(n) (>> 1) is an additive, 

2 < _ n < x  

prime-independent function of moderate growth. 
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