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The distribution of the average prime divisor of an integer

By

JEAN-MARIE DE KONINCK and ALEKSANDAR IviC

1. Introduction. Let us usual w(n) and Q(n) denote the number of distinct prime
divisors and the total number of prime divisors of n respectively, and let P(n) denote the
largest prime factor of n = 2. One may define the average prime factor of n as

(L) pm=29" gw=xp
w(n) pin
w _ B _
(12) P - g BO)= T ap

where as usual p* || n means that p* divides n (p prime), but p**! does not. Thus one may
consider P, (n) as the average of distinct prime factors of n, while P*(n) is the average of
all prime factors of n, counted with their respective multiplicities. The functions §(n) and
B(n) are additive, and they are “large” in the sense of Chapter 6 of [4]. Problems involving
B(n) and B(n) have attracted much attention in recent years. Thus in [1] K. Alladi and
P. Erdos showed

(L.3) 2 P~ X B~ X B

~
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while P. Erd6s and A. Tvic [6] showed that

B x B(n) _ x
(4 Zm=+0<rg—> Zm—”(ﬁ)

and A. Ivi¢ and C. Pomerance [10] proved a sharp asymptotic formula for the summatory
function of B(n)/f(n). Further results involving various estimates with P(n), $(n) and B(n)
are to be found in [3]-[10], and the purpose of this note is to sharpen (1.3) and to prove
an asymptotic formula for the summatory function of B, (n), P*(n) and F,(n)/P*(n). The
results are contained in

n?x?

Theorem 1. For each fixed natural number m there exist computable constants
d,=n*/12,d,,...,d, such that

d d d 1
1.5 P(n) = x* — 2 ... _+0 .
(15 zgix (n) = x <logx + log? x et log™ x + log™*1x

and the formula remains true if P(n) is replaced by B(n) or B(n).
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Theorem 2. For each fixed natural number m there exist computable constants
€13€0,eresCps J15 25w s frn SUCh that 0 < f; < e, and
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Theorem 3. For each fixed natural number m there exist computable constants g.,..., g,
such that
F,(n) 91 g 1
1.8 LARAE — 4 ... - o .
S <1og logx * " Togloga” T ¥ \{log log

The notation used throughout is standard: p, g always denote primes, a|b means that
a divides b, f(x) = O(g(x)) and f(x) <€ g(x) both mean | f(x}| < Cg(x) for x = x, and
some C > 0.

2. The necessary lemmas. In this section we present some lemmas which are necessary
for the proofs of our theorems. These are

Lemma 1. For each fixed natural number m there exist computable constants ¢, = 1/2,
Cyyens Cp SUCh that

1) spoxt(Sp 2y Lo L .
et logx log%x log" x log" "1 x

Lemma 2. For each fixed pair of natural numbers m, i there exist computable constants
Co; =T[6, Cy 1y, Cp; Such that

1 Co,i Cy,i Con, i 1
(2.2) X =ttt T 0 itm+iy |
ngx 5. X log'x log'"'x log™ ™ x log X
n“log{—+1
n

Lemma 3. Let f(n) > 0 be an arithmetical function such that f (n) < logn. Then for any
fixed A >0

@) f0)Bt)= 5 f(0) Pla)+ O(:7log™ 4 x loglog )
(2.4) fm)Bm)= X f(n) P(n)+ O(x*log=*"* x log log x).

The proof of Lemma 1 is obtained by partial summation from the prime number
theorem, while Lemma 2 follows by applying standard techniques from analysis. For
Lemma 3 it is sufficient to prove (2.4) only, since the proof of (2.3) is quite similar. Write

2 fm)Bm)=5+85,,

22nsx
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say, where in S, the summation is over n < x for which P(n) < nlog™*n, and in S, over
the remaining n. Using

B(n)=3 ap = P(m) ¥ a=Pn) 2n)

il p*|n

and the elementary estimate

> Q(n) < xloglog x,

n=sx

we obtain

S, < by P(n) Q(n) logx < xlog™4*1x 3 Q(n)

P(n)Snlog=4n, n<x n<x
< x*log 4% 1 x loglog x.
Consider now S, and suppose g*|| 1, g < P(n). Then
g*nlog “n < q* P(n) <n,

which gives ag < ¢* < log?n. Therefore

S;= Y f(mP(m+ O0(x*log”4*!x loglogx)

2=5nsx
+0(Xlogn X aq)
ngx a* || n,q* <log4n
= Y f(n)Pm+ O0(x*log **x loglogx)+ O(log'"1x Y w(n)
2<nsx n<x

= Z f(n) P(n) + O(x? log_A“xloglogx)

3. Proof of theorems. First we present the proof of Theorem 1. Observe that by Lemma 3
with f(n) = 1 and A = m + 3 it is seen that (1.5) does indeed hold if P (n) is replaced either
by f(n) or B(n). To prove (1.5) write

(3.1 2<Z< P(n) = 3 EP;( . p= gpl//(X/P,p),
where o = B .
vy = X 1

n<x,P(n)<y

is the function which represents the number of n < x for which P (n) < y, and furthermore
¥ (x, y) = [x]if y = x, while for 1 < y < x various useful estimates for ¥ (x, y) exist in the
literature (e.g. see [2]). But we have

(3:2) gptﬁ (x/p, p) = Z Y (x/p, )+ > py(x/p,p)

psVx Vx<psx

=0(x*)+ 3 plxfpl= T p+ 0>,
x<p<x pnsx
since ¥ (x/p, p) = [x/p] for p = \/; Observing that (2.1) remains true if log'x (i =1, ...,
m + 1) is replaced by log’(x + 1), we obtain then by using Lemma 2
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dy d 1
(3.3) Sp=3% Zp—x( +o = +0< — )),
s n=x pSxin log x log™ x log
and Theorem 1 follows now easily from (3.1), (3.2) and (3.3).
For the proof of Theorem 2 we remark that by Lemma 3 (with A = m + 2) it will be
sufficient to prove the corresponding asymptotic expansions for

(34 > Pmjom, X P n)/Qn).

2Znsx 2sn

II/\

In both sums in (3.4) we may suppose that P (n) | n, since

by Pn)jom= X p< X p<pxz+l><xloglogx.

2<n<x, PXn)|n p’m=x pP=Vx

Also by the argument used in the proof of Lemma 3 we may suppose that P(n) € I,
where
m—2

I'=[nlog ™ “n,n].

Therefore if * denotes summation over those n for which P (n) || n and P (n) € I, then

1 1
(3.5) s 20 SL_E P-%,

S
nsx a)(n) k £x, o(n)=k k k k( )

where k takes at most O (log x/log log x) values. Using Lemma 1 we have

c C 1
— 21 -m-2 — 2 1 m 0
S; (%) p%xp+ O (x”log xX)=x <1ng +...+ fog"x + <log"‘“ >>
while for k = 2

(3.6) Sx)= 2X* P= 2 P
n<x, on)=k pit .. p¥kip<x, pel
P1< ... <pp-<p
= 2 2 p.
P PR ISx peos<pSxp;] *U...p ML pel

P1< ... <Pr-1

To estimate the inner sum above we shall use Lemma 1. The contribution of those
primes for which p < p,_, is small, since P(n) = p €I implies p,_; < log”"*n, hence
trivially

Z p < 10g2m+4x Z 1 < x 10g2m+4x

o oy —
pit.. . pkilsx PE<pr-1 n<x
pi<...<pr_1Slogm*2n

and this estimate is uniform in k, so that summation over k in (3.5) will produce an error
term which will certainly be O (x? log™™~ 1 x). Thus using Lemma 1 we see that the main
contribution to S, (x) will be

3.7) x? S pr2 . pre-1 Y e log ! X ,
L3 Pk — 1
i=1 P11--~Pk—_1

x1 e —1 <
Py Py =X

P1< ... <pr-1
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and further we obtain

— 201 — 20— 1 —i x
(38) 2 P 2 .. .pk_zl IOg <m + 1)
P P isx PP
P1< ... <pk-1
9ol k) g:(i. k) I (i K) 1
= - - - 0 -
logix  logi*lx e logi*™x + logi*mtlx
for some suitable constants g¢,(i, k), ..., 9,,(i k). In fact for some constant &(i,j)
(j=0,1,...,m) we have
. h(i, j)log' d logi x
(39) gj(l’ k) = Z d2 + 0 ]
d=x, o(d)=k—1 X

where the O-constant is uniform in k. From (3.5)-(3.9) we obtain then (1.6) with some
computable constants ey, e,, ..., e,,, since for each j

o h(i, j) logid log’ x log log x
k™ lg.G, k) = +0
2O o e x
L log’d log’ x log log x
—hG) T —2 L o BEOE0EX)
U)X @t D& < x

and by collecting various terms of the form x2log*x (t = 1,2, ..., m) we obtain (1.6).
The proof of (1.7) is completely analogous to the proof of (1.6) and this therefore
omitted, but note that we obtain 0 < f; < e,, which means that the average order of P, (n)
is larger than the average order of P*(n).
As for Theorem 3, it may be noted that using the method of proof of Lemma 3 it is
sufficient to estimate

(3.10) *P.m)/P*(n)= X* M + O(xlog™“x),
nEx n<x a)(n)B(n)
since
(3.11) Y 1/B(n) = x exp {—(2log x log log x)'/? 4 O ((log x log log log x)*/?)},

nsx

as proved in [9]. Here >°* denotes summation over n < x such that P(n) |nand P(n) e I
= [nlog“*n, n], where 4 > 0 is a sufficiently large constant. The condition P(n)e I
implies g < log*nif ¢* || n, g < P (n), so that in 3* in (3.10) one may also replace B (n) by
P (n) with a manageable error, since using (3.11) we have

52 200 o, Q0)P@)

nsx @M pgx 0(m) B

1
<logx X —— > aq
22n<x B(1) = | n, g< P, gtog4n
<logit?x ¥ <xlog™4x.

22nzxB (1)
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Thus all we are left with is the sum of quotients of Q(n) and w(n), 1.e.

S*QMjom = ¥ Qmom + 0(xlog' “x)

n=x 2=n=x

gl gm 1
== U —— . ae 0 2
XX <log log x Tt (log log x)™ * <(log log x)’"“))

if A > 1, when one used the asymptotic formula (4.3) of [4]. This proves Theorem 3.

4. Remarks. Instead of summing P, (n) or P* (n) one may sum their reciprocals, and this
was investigated in [7] and [8]. In that case one has, following the proof of (1.7) in [8],

I logx \!f? 1
2 B = (/2 +o) ( ) V2 B
1

n) 2<n<xﬂ IOgX

3 Qm logx /2 B
25nsx P*(n) —zggxif(n_) =Wt 0(1))<log logx> 2§§§x3(”)’

while

L exp { —(2 log x log log x)"/? + O ((log x log log log x)*/?)} .
25nsx ()

The last formula was proved in [9] and sharpened in [10]; the result remains true if ()
is replaced by P(n) or B(n) (see (3.11)).

We may also remark that (1.8) (with possibly different g,’s) remains true if the left-hand
side is replaced by > P*(n)/P,(n). This follows from the fact that an asymptotic

_n X

formula for Y (n)/2(n), analogous to (4.3) of [4] also holds, and may be established

2=nsx
by the same method of proof. Also the function on the right-hand side of (1.8) could be
replaced by a more precise expression if instead of (4.3) of [4] one uses the more refined
estimate for > Q(n)/w(n), proved in chapter 5 of [4].

28nsx
The method of proof of Theorem 2 could be also used to yield estimates of the type
(1.6) and (1.7) for the more general sums Y. f(n) P (n), where f(n) (> 1) is an additive,
25nsx
prime-independent function of moderate growth.
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