RECIPROCALS OF CERTAIN LARGE ADDITIVE FUNCTIONS

by J.-M. DE KONINCK, P. ERDÖS AND A. IVIĆ

1. Introduction and statement of results

Let $\beta(n) = \sum_{p \mid n} p$ and $B(n) = \sum_{p^{\alpha} \parallel n} \alpha p$ denote the sum of distinct prime divisors of *n* and the sum of all prime divisors of *n* respectively. Both $\beta(n)$ and B(n) are additive functions which are in a certain sense large (the average order of B(n) is $\pi^2 n/(6 \log n)$, [1]). For a fixed integer *m* the number of solutions of B(n) = m, is the number of partitions of *m* into primes, while the number of solutions of $\beta(n) = m$, $\mu^2(n) = 1$ is the number of partitions of *m* into distinct primes. There is a certain analogy between the relation of $\beta(n)$ to B(n) and the relation of the well-known additive functions $\omega(n) = \sum_{p \mid n} 1$ and $\Omega(n) = \sum_{p^{\alpha} \parallel n} \alpha$. Asymptotic estimates of B(n) were investigated in [1], revealing the connection between B(n) and large prime factors of *n*. In this paper we turn our attention to sums involving reciprocals of $\beta(n)$ and B(n). We shall prove the following theorems:

THEOREM 1. For any $\varepsilon > 0$ and $x \ge x_0(\varepsilon)$,

(1)
$$x \exp(-(2+\varepsilon)(\log x \cdot \log \log x)^{1/2}) \le \sum_{2 \le n \le x} 1/B(n)$$
$$\le \sum_{2 \le n \le x} 1/\beta(n) \le x \exp(-(\frac{1}{2}-\varepsilon)(\log x \cdot \log \log x)^{1/2}).$$

THEOREM 2. There exist positive constants $C_1, C_2 > 0$ such that

(2)
$$\sum_{2 \le n \le x} B(n)/\beta(n) = x + O(x \exp(-C_1(\log x \cdot \log \log x)^{1/2})),$$

(3)
$$\sum_{2 \le n \le x} \beta(n) / B(n) = x + O(x \exp(-C_2(\log x \cdot \log \log x)^{1/2})).$$

THEOREM 3.

(4)
$$\sum_{n \leq x}' 1/(B(n) - \beta(n)) = Cx + O(x^{1/2} \log x),$$

Received by the editors October 9, 1979 and in revised form January 29, 1980 and March 4, 1980

where

(5)
$$C = \int_0^1 (F(t) - 6\pi^{-2}) t^{-1} dt, \qquad F(t) = \prod_p \left(1 + \sum_{k=2}^\infty (t^{p(k-1)} - t^{p(k-2)}) p^{-k} \right),$$

and \sum' denotes summation over $n \leq x$ such that $B(n) \neq \beta(n)$.

2. Proofs

We first prove the lower bound in (1). Let

$$A_k = \{n \mid (n \le x) \land (\mu^2(n) = 1) \land (p(n) \le x^{1/k})\}.$$

where we shall use p(n) to denote the largest prime factor of n, x will be sufficiently large and $k = (\log x/\log \log x)^{1/2}$. If n is a product of k different primes each not exceeding $x^{1/k}$, then $n \in A_k$. There at least $U = 3kx^{1/k}/(4\log x)$ primes not exceeding $x^{1/k}$, which means

(6)
$$\sum_{n \in A_k} 1 \ge {\binom{U}{k}} = \frac{U(U-1)\cdots(U-k+1)}{k!} \ge {\binom{2}{3}U}^k/k!,$$

since $U-k+1 \ge 2U/3$ for x sufficiently large. From Stirling's formula or by induction it is seen that $(k/2)^k > k!$ for $k \ge 6$, which when combined with (6) gives

(7)
$$\sum_{n \in A_k} 1 \ge x \log^{-k} x.$$

Now for $n \in A_k$ we have $B(n) = \beta(n) \le p(n)\omega(n) \ll \frac{x^{1/k} \log x}{\log \log x}$, hence

(8)
$$\sum_{2 \le n \in A_k} 1/B(n) = \sum_{2 \le n \in A_k} 1/\beta(n) \gg x^{-1/k} \log^{-1} x \sum_{n \in A_k} 1$$
$$\ge x^{1-1/k} \log^{-k-1} x = x \exp(-2(\log x \cdot \log \log x)^{1/2}) \log^{-1} x,$$

which proves the lower bound in (1). To prove the upper bound in (1) write

(9)
$$\sum_{2 \le n \le x} 1/\beta(n) = \sum_{2 \le n \le x, p(n) \le y} 1/\beta(n) + \sum_{n \le x, p(n) > y} 1/\beta(n)$$
$$\leq \sum_{2 \le n \le x, p(n) \le y} 1 + y^{-1} \sum_{n \le x, p(n) > y} 1 \le \psi(x, y) + xy^{-1}$$

where y = y(x) > 2 will be suitably chosen in a moment. For the function

$$\psi(x, y) = \sum_{n \le x, p(n) \le y} 1$$

we use the following estimate of [2]:

(10)
$$\psi(x, y) < c_3 x \log^2 y \cdot \exp(-\alpha (\log \alpha + \log \log \alpha - c_4)),$$

where c_3 and c_4 are some positive, absolute constants, $\lim_{x\to\infty} y = \infty$ and

(11)
$$3 < \alpha = \log x / \log y < 4y^{1/2} / (\log y).$$

226

[June

Now we choose

(12)
$$y = \exp((\log x \cdot \log \log x)^{1/2}).$$

Then (11) is satisfied for $x \ge x_0$ and

(13)
$$\psi(x, y) \ll_{\varepsilon} x \exp(-(\frac{1}{2} - \varepsilon)(\log x \cdot \log \log x)^{1/2}),$$

where \ll_{ε} means that the constant implied by the symbol \ll depends on ε only. Substitution in (9) then gives the right-hand side inequality in (1), finishing the proof of Theorem 1.

To prove Theorem 2 it is enough to prove (2), since trivially

(14)
$$\sum_{2 \le n \le x} \beta(n)/B(n) \le x + O(1),$$

and by the Cauchy-Schwarz inequality we have

(15)
$$x^2 + O(x) \le \left(\sum_{2 \le n \le x} 1\right)^2 \le \sum_{2 \le n \le x} B(n)/\beta(n) \sum_{2 \le m \le x} \beta(m)/B(m),$$

so that (2) then implies (3). Let

(16)
$$S = \sum_{2 \le n \le x} B(n)/\beta(n) = S_1 + S_2,$$

where in S_1 summation is over $2 \le n \le x$ such that $B(n) < k\beta(n)$, and in S_2 over $2 \le n \le x$ such that $B(n) \ge k\beta(n)$, where k = k(x) is a large number which will be suitably chosen later. Note that if $B(n) \ge r\beta(n)$ for some integer $r \ge 2$, then n must be divisible by p^r for some prime p, so that the number of $n \le x$ for which p^r divides n for some p is $\ll \sum_p xp^{-r} \ll x2^{-r}$. Then we have

(17)
$$S_2 = \sum_{r \ge k} \sum_{2 \le n \le x, r \le B(n)/\beta(n) < r+1} B(n)/\beta(n) \ll \sum_{r \ge k} x(r+1)2^{-r} \ll x \exp(-C_3 k)$$

for some $C_3 > 0$. To estimate S_1 write

(18)
$$S_1 = S'_1 + S''_1.$$

In S''_1 , summation is over $2 \le n \le x$ such that $B(n) < k\beta(n)$ and *n* is divisible by p^2 for some prime p > L, where L = L(x) is a large number that will be suitably chosen. Thus we obtain

(19)
$$S_1'' \ll k \sum_{n^2 m \le x, n > L} 1 \ll k \sum_{n > L} x n^{-2} \ll k x / L.$$

If $n = p_1^{a_1} \cdots p_i^{a_i}$ is counted in S'_1 then $a_j = 1$ for $p_j > L$ and $j = 1, \dots, i$, which implies

(20)
$$B(n) = (a_1 - 1)p_1 + \dots + (a_i - 1)p_i + \beta(n) \le L(a_1 + \dots + a_i - i) + \beta(n) \\ \le L(\Omega(n) - \omega(n)) + \beta(n) \le L(\log x/\log 2) + \beta(n).$$

1981]

Therefore we have

(21)
$$S'_{1} \leq \sum_{n \leq x} 1 + L(\log x/\log 2) \sum_{2 \leq n \leq x} 1/\beta(n)$$
$$\leq x + O(xL \log x \cdot \exp(-C_{4}(\log x \cdot \log \log x)^{1/2})),$$

where we have used (1) to estimate $\sum_{2 \le n \le x} 1/\beta(n)$. From (16)–(21) we obtain

(22)
$$S \leq x + O(kx/L) + O(x \exp(-C_3 k)) + O(xL \log x \cdot \exp(-C_4(\log x \cdot \log \log x)^{1/2})).$$

Noting that trivially $S \ge x + O(1)$ and choosing

(23)
$$k = (\log x \cdot \log \log x)^{1/2},$$

(24)
$$L = \exp(C_5(\log x \cdot \log \log x)^{1/2}), \quad C_5 = C_4/2,$$

we obtain (2) from (22).

To prove Theorem 3 we employ an analytical method. Let $0 \le t \le 1$ and observe that $t^{B(n)-\beta(n)}$ is a multiplicative function of *n* satisfying $t^{B(p^k)-\beta(p^k)} = t^{p(k-1)}$ for k = 1, 2, ... and every prime *p*. Therefore for Re s > 1

(25)
$$\sum_{n=1}^{\infty} t^{B(n)-\beta(n)} n^{-s} = \prod_{p} (1+p^{-s}+t^{p}p^{-2s}+t^{2p}p^{-3s}+\cdots) \\ = \zeta(s) \prod_{p} (1+(t^{p}-1)p^{-2s}+(t^{2p}-t^{p})p^{-3s}+\cdots) = \zeta(s)G(s,t),$$

where $\zeta(s)$ is the Riemann zeta-function and for Re $s > \frac{1}{2}$

(26)
$$G(s, t) = \sum_{n=1}^{\infty} g(n, t) n^{-s},$$

and g(n, t) is a multiplicative function of *n* for which g(p, t) = 0 and $|g(p^k, t)| \le 1$ for $k \ge 2$. Therefore uniformly for $0 \le t \le 1$ we have

(27)
$$\sum_{n \le x} |g(n, t)| \ll x^{1/2},$$

and by partial summation we subsequently obtain

(28)
$$\sum_{n \le x} t^{B(n) - \beta(n)} = \sum_{n \le x} g(n, t) [x/n] = x \sum_{n \le x} g(n, t)/n + O\left(\sum_{n \le x} |g(n, t)|\right)$$
$$= x G(1, t) + O(x^{1/2}),$$

where

$$G(1, t) = \prod_{p} \left(1 + \sum_{k=2}^{\infty} \left(t^{p(k-1)} - t^{p(k-2)} \right) p^{-k} \right) = F(t),$$

and therefore

$$F(0) = \prod_{p} (1 - p^{-2}) = 6/\pi^2.$$

228

Note that $B(n) = \beta(n)$ if and only if n is squarefree. Therefore we have uniformly in t

(29)

$$\sum_{n \le x} t^{B(n) - \beta(n) - 1} = \sum_{n \le x, B(n) \ne \beta(n)} t^{B(n) - \beta(n) - 1}$$

$$= xt^{-1}F(t) + O(x^{1/2}t^{-1}) - \sum_{n \le x} \mu^2(n)t^{-1}$$

$$= x(F(t) - 6/\pi^2)t^{-1} + O(x^{1/2}t^{-1}).$$

Since $F(0) = 6/\pi^2$ the function $(F(t) - 6/\pi^2)t^{-1}$ is continuous for $0 \le t \le 1$, and we obtain the conclusion of the theorem integrating (29) over t from $\varepsilon(x) = x^{-2/3}$ to 1, since

(30)
$$\int_{\varepsilon(x)}^{1} \sum_{n \le x}' t^{B(n) - \beta(n) - 1} dt = \sum_{n \le x}' \frac{1}{(B(n) - \beta(n))} + O(x^{1/3}),$$

(31)
$$x \int_0^{\varepsilon(x)} (F(t) - 6/\pi^2) t^{-1} dt \ll x \varepsilon(x) = x^{1/3},$$

(32)
$$\int_{\varepsilon(x)}^{1} O(x^{1/2}t^{-1}) dt \ll x^{1/2} \log 1/\varepsilon(x) \ll x^{1/2} \log x.$$

3. Some remarks

It seems probable that the inequalities (1) may be replaced by asymptotic formulae, viz.

(33)
$$\log \sum_{2 \le n \le x} 1/B(n) \sim \log x - C(\log x \cdot \log \log x)^{1/2}, \quad x \to \infty, \quad C > 0$$

(and a similar formula with $\beta(n)$ instead of B(n)), but we are unable to prove (33). Our results concerning B(n) and $\beta(n)$ may be compared with corresponding results for "small" additive functions $\Omega(n)$ and $\omega(n)$. Utilizing essentially the method of proof of Theorem 3 it was shown in [3] that

(34)
$$\sum_{2 \le n \le x} \frac{1/\Omega(n) = x/\log\log x + a_2 x/(\log\log x)^2 + \dots + a_{N-1} x/(\log\log x)^{N-1}}{+O(x/(\log\log x)^N)},$$

(35)
$$\sum_{2 \le n \le x} 1/\omega(n) = x/\log \log x + b_2 x/(\log \log x)^2 + \dots + b_{N-1} x/(\log \log x)^{N-1} + O(x/(\log \log x)^N),$$

where the a_i 's and b_i 's are computable constants and N is arbitrary, but fixed. Similarly [4] contains a proof that

(36)
$$\sum_{2 \le n \le x} \Omega(n) / \omega(n) = x + c_1 x / \log \log x + \dots + c_{N-1} x / (\log \log x)^{N-1} + O(x / (\log \log x)^N),$$

and the formulae (34)-(36) are further sharpened in [5].

[June

The degree of sharpness of the above formulae is not attained in our theorems concerning $\beta(n)$ and B(n), which is to be expected since $\beta(n)$ and B(n) are much larger functions than $\omega(n)$ and $\Omega(n)$, possessing notably wider fluctuations in size.

It is clear that the method of proof of Theorem 2 would yield (2) and (3) with B(n) and $\beta(n)$ replaced by $B^m(n)$ and $\beta^m(n)$ respectively, where *m* is a fixed positive integer. Our methods also work in the general case of other large additive functions defined by

$$f(n) = \sum_{p \mid n} h(p), \qquad F(n) = \sum_{p^{\alpha} \parallel n} \alpha h(p),$$

where for some fixed $K, \gamma > 0$ and a fixed real δ we have

$$h(x) = \exp(K \log^{\gamma} x \cdot (\log \log x)^{\delta}).$$

For other results and problems concerning B(n) and $\beta(n)$ the reader is referred to [1].

Closely related to B(n) and $\beta(n)$ is the function $B_1(n) = \sum_{p^{\alpha} \parallel n} p^{\alpha}$. From $B_1(n) \ge \beta(n)$ and the fact that $B_1(n) = B(n) = \beta(n)$ if $n \in A_k$ (the set defined at the beginning of §2) we conclude that the bounds of Theorem 1 hold also for

$$\sum_{2\leq n\leq x} 1/B_1(n).$$

It seems likely that

(37)
$$\sum_{2 \le n \le x} B_1(n) / \beta(n) = (c_1 + o(1)) x \log \log x$$

and

(38)
$$\sum_{2 \le n \le x} B_1(n) / B(n) = (C + o(1))x, \quad C > 0.$$

We can rigorously prove at present only

(39)
$$\sum_{2 \le n \le x} B_1(n)/\beta(n) \ge \frac{1}{2}x \log \log x + o(x \log \log x).$$

To see this let $p_1 < \cdots < p_k$ be the primes not exceeding x. Suppose $p_i^{l_i} \le x < p_i^{l_i+1}$ $(i \le k)$ and define $t_i \ge 1$ by

(40)
$$t_i p_i^{l_i} \le x < (t_i + 1) p_i^{l_i}$$

so that $t_i < p_i$. Then we have

(41)
$$S = \sum_{2 \le n \le x} B_1(n) / \beta(n) > \sum_{i \le k} \sum_{s \le t_i} B_1(sp_i^{t_i}) / \beta(sp_i^{t_i}),$$

Now $\beta(sp_i^{l_i}) \leq \beta(s) + \beta(p_i^{l_i}) \leq s + p_i \leq t_i + p_i < 2p_i$ and $B_1(sp_i^{l_i}) \geq p_i^{l_i}$, which gives

$$S > \sum_{i \le k} \sum_{s \le t_i} p_i^{t_i} / (2p_i) \ge \sum_{i \le k} t_i p_i^{t_i} / (2p_i) \ge \frac{1}{2} \sum_{i \le k} (xp_i^{-t_i} - 1)p_i^{t_i - 1}$$
$$\ge \frac{x}{2} \sum_{i \le k} 1 / p_i + O\left(\sum_{i \le k} p_i^{t_i - 1}\right) \ge \frac{x}{2} \log \log x + o(x \log \log x),$$

since

$$\sum_{p \le x} 1/p = \log \log x + O(1) \quad \text{and} \quad \sum_{i \le k} p_i^{l_i - 1} = o(x \log \log x).$$

References

1. K. Alladi and P. Erdös, On an additive arithmetic function, Pacific J. Math. 71 (1977), 275-294.

2. N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors >y, Indag. Math. **13** (1951), 50-60.

J.-M. De Koninck, On a class of arithmetical functions, Duke Math. J. 39 (1972), 807-818.
 J.-M. De Koninck, Sums of quotients of additive functions, Proc. Amer. Math. Soc. 44 (1974), 35-38.

5. J.-M. De Koninck and A. Ivić, Sums of reciprocals of certain additive functions, Manuscripta Math. **30** (1980), 329-341.

JEAN-MARIE DE KONINCK DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ LAVAL, QUÉBEC GIK 7P4, CANADA.

PAUL ERDÖS

HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, HUNGARY

Aleksandar Ivić Rudarsko-geološki fakultet Universiteta u Beogradu Djušina 7, 11000 Beograd Yugoslavia