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SUNS OF RECIPROCALS OF CERTAIN ADDITIVE FUNCTIONS 

Jean-Marie De Koninck and Aleksandar Ivi6 

We obtain sharp estimates for sm~s of reciprocals and st~s of quotients of cer- 
tain non-negative integer-valued additive arithmetical functions. 

I. Introduction 

In this paper we give sharp estimates s the sims 7' I/f (n) and 
n~z 

~' g(n)/fCn) , where f(n) and g(n) belong to a certain class of non- 
n~z 

negative, integer-velued additive arithmetical functions, (here ;.' denotes 

sunmation over those n for which f(n) m 0). In particular, we improve over 

the following asymptotic formulas proved in [I] and [2], respectively: 

(1.1) 
�9 o. (, 

. O -  x . 

n~ i:I (log log x) z log log z)N§ ' 

(1.2) 
n~ i=I (log log x) i Clog log x) ~+ ' 

where ~(n) and ~(n) denote  t he  number o f  d i s t i n c t  prime d i v i s o r s  and t h e  n u ~  

b e r  o f  a l l  prime d i v i s o r s  o f  n r e s p e c t i v e l y ,  a l l  t he  a . ' s  and b . ' s  a re  

computable c o n s t a n t s ,  and N~ 1 i s  an a r b i t r a r y  T i e d  i n t e g e r .  

N a .  
Onewill o b s e r v e  that ~ , , ,~ = alL(=) 

i = 1  ( l o g  l o g  x )  i 

where fo r  x > x  0 the  f u n c t i o n  L(x) i s  p o s i t i v e ,  con t inuous ,  and f o r  eve ry  

c > 0 has  the  p rope r ty  
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2 DE KONINCK - IVIC 

(i.5) lira C(~) I L (=)  : 1 . 

Such ftmctions L(x) are called slowly oscillating (or slowly varying; 

see [71 f o r  a comprehensive a c c o u n t ) ,  and t h e i r  canon ica l  r e p r e s e n t a t i o n  i s  

(1.4) L(x) = p(x) exp ( I 6(t) t-ldt) , 

x 
o 

where o(x) and 6(z) a re  con t inuous  f o r  x > z  ~ , lira p(x) = A > 0  and 

lira 6(x) : 0 . A l l  s lowly  o s c i l l a t i n g  f u n c t i o n s  t h a t  appear  in  the  seque l  admit 
z ~  

an a sympto t i c  expans ion  in  terms o f  n e g a t i v e  powers o f  log log  z , t h a t  i s  to  

say ,  f o r  every  f i x e d  i n t e g e r  M~ 1 t h e r e  e x i s t  c o n s t a n t s  A1,A2,...,AM_ 1 such 

t h a t  

L(x)= 1 A1 AM-I ( 1 ) 
~-~-~ + + ... + + 0 . 

(log log z) 2 (log log x) N (log log x) t4+l 

2. Theorems and proofs 

Theorem I. Let f(n) be a non-negative, integer-valued additive arithme- 

tical function such that for every prime p, f(p) = 1 and f(pk) < Ck for every 

k ~ 2 and some fixed C �9 0 . Then for every fixed integer N ~ 1 there exist 

computable c o n s t a n t s  oi,... ,o N such that 

�9 . .  0 X J C2.i) Z' llf(.) -- oIx~I(=) �9 + - -  + 
n< ~ logN-I z 

w~eT~ every Lj(x) (j = I,...,N) is a slowly oscillating function asymptotic to 

1 / l o g  log  x . 

Theorem 2. Let f (n)  be a n o n - n e g a t i v e ,  i n t e g e r - v a l u e d  a d d i t i v e  a r i t h -  

m e t i c a l  function such that for every prime p, f(p) = 0 , f(p2) = 1 , and 

0 < f(pk) < Ck for every k > 3 and some fixed C �9 0 . Then for every fixed 
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DE KONINCK - IVIC 3 

integer N z 1 there exist computable constants eo, el,...,e N such t h a t  

elxl/2~1(=) + e~xl/2~'~(x) ~ xI/2 1 (2.2) n~z%' 1/f(n) : eoX + logz + "'" logNz + " ~ l o g ~ x l  ' 

where every Lj(z) (j=I,...,N) is a slowly oscillating function asymptotic to 

l/log logz . 

Theorem 5. Let f and g be two non-negative, integer-valued additive 

arithmetical functions such that for all primes p and integers k z 2,f~) = g~p) = 1 

f(pk) < Ok , g(pk) < 6% , where C is a positive constant. Then for every fixed 

integer N ~ 1 there exist computable constants aj, bj (j = I,...,N) such that 

(I) n~[' = z(al + blLl(Z) + logz +" "+ log N'Ix J + ' 

where every  Lj(x) ( j  = 1 , . . . , N )  i s  a s lowly o s c i l l a t i n g  f u n c t i o n  asympto t i c  to  

1 / l o g  l o g x  . 

Proofs. We shall use two deep results of H. Delange (proved in [3] and 

[4] respectively), which we state here as 

Lemma i. Let fCn) be a non-negative, integer-valued additive arithme- 

tical function such that f(p) = 1 for every prime p . Let ao(p ) denote for 

every p > 0 the infilman of real numbers c > 1/2 for which 

(2.S) [ pf~k) p-ko < +| 
p., k>2 

i f  this set is non-empty (and Oo(p ) = +| otherwise), and let E be the set of 

all p > 0 for which Oo(P ) < 1 and R the suprmntm of the set E (finite or 

+ | Then for every fixed integer N ~ 0 there exist functions Ao,A I ..... A N 

analytic for Izl < R and continuous for I~I ~ R such that 

Ao(0 ) : A I ( 0 )  . . . . .  AN(0) : 0 and 
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= .+ , 

n~x j=O (log z) J log/~+l x 

where fo r  every p �9 0 from E the o-constant is uniform fo r  Izl s p . 

Lemma 2. Let f(n) be a non-negative, integer-valued additive arithme- 

tical function such that for every prime p, f(p) = 0 and f(p2) = 1 . For 

every p ~ 0 d e f i n e  a multiplicative function hp by" 

pf(pk) + pf@h-~) fCpk ) . fCp~.i ) 

[z.5) hpC~ k) = 

0 fGp~) = fCk-1) 

and for every p > 0 let Co(p ) be the infimi~ of real ntmIbers o �9 i13 for 

which 

(2.6) hp@k) p-k~ < + . 
p, k~3 

if this set is non-empty (and ao(p) = + | otherwise). Let further I be the set 

of p > 0 for which a o(p) < 1/2 , and R the supremum of I (finite or + | 

Then for every fixed integer N > 0 there exist functions F, Ao,AI,... ,A N 

analytic for Izl < R and continuous for IsJ < R such that 

F(0) = 61~2,AoC0) ..... A~/C0) = 0 and 

C2.7) 7. a fen) = xFCa) + x I12 (logx) "-2 [ + 0 , 
n <~ j-O (logz) J log #+I x 

whe~for every p �9 0 from I the O - c o n s t a n t  is uniform f o r  )s I s p . 

We begin now the proof of Th. 1 by observing that if f satisfies the 

hypothesis of Th. i, then Lem~a 1 may be applied with some R �9 1 , and so (2.I) 

holds uniformly in z for I*~ s i . TO see this note that if p ~ 1 
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[ of[P;~)P -~as [ (pCp-~)k -- Z (pcp-a)21 (1 - pCp-c') < + - 
p~ k >2 pj k>2 p 

for every o �9 1/2 , provided that pCp-a < 1 - B for some fixed O<B<I . 

if a ~ 2/3 then 

pCp-o < pC2-2/3 �9 5/5 

for p < ~22/3) I/c . Since C is fixed this last ntxnber is greater than uniZy, 

and thus Lemma 1 applies with some R > 1 . 

Now f(n} = 0 for n~x if , = 1 or possibly if n is one of the 

0(= 1/2) "square-full" nt~rs not exceeding z (ntm~rs of the form 

a I a i 
n = Pl "'" Pi where a I ~ 2,...,a i > 2) . If fCn) ,c 0 , then f(n) > i since 

f is integer-valued and non-negative. Dividing (2.4) by H and setting 

~(;~) = Aj(z) /8 we see that for [8[ < 1 we have uniformly 

n~x 'j=0 (log z) a n(log =) ~+I 

We take now ~ real and integrate (2.8) from z(z) = z -2/3 to 1 over 

. The left-hand side of (2.8) becxmms after integration 

(2.9) ~' i/f(n) - ['(r = [ '  I/((n) * 0@ I/3 ) , 
n~ n~ n~ 

since (r f(n) << r if f(n) , 0 . 

Integrating the right-hand side of (2.8) it is seen that the integral of 

the error term is 

1 

(2.10) xlog~'N'2x �9 -~ << xlog-Nx . 

r 
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6 DE KONINCK - IVIC 

When integrating the main terms on the right-hand side of (2.8) we en- 

counter integrals of the form 

1 I 

(2.11) z(logz) -1-j I Bj(,)log'z.d~ = z(logx) -l-j I Bj(z) logZx.d~ + 0(x113) , 

�9 Cx) o 

since Bj(z) = 4j(~) /z is an analytic function for 

and Aj(0) = 0) , so that f o r  x ~ s ~ 

) Bj (~') log ~' =. dz << (log =f (=) 

o 

l~l < 1 (because R �9 1 

elx) I~.(--) I ~ 
o 

<< eJCp(~ -2/3 iog Iog=) . e(x) max IB#(~) I << eCx) = x -213 . 
ze[O,l] " 

Integration by parts gives for every fixed integer I4 > 1 

1 

I ,, : 1 
o o 

B~ (~) 1og~x 11 
+ "'" + (-I)M-I (log log=) M-i o 

(z.lz),o I I~M+~) (=)l log ~= a..(1) 1ogz (1) log= 
d~ : ~/oglogz * " ' "  + (-I)M-I 

o (log log x) M+I (log log x) M 

+0(  '' ' l~ } �9 
(log log z) M+I 

which means tha t  L j ( x )  = ~' j(x) / (Bj(1) log:c) is a s lowly o s c i l l a t i n g  func t ion  

asymptotic to 1/log log z which adm~its an expansion in terms of negative powers 

of ~1oglog=. From (2.9) - (2.12) Th. i follows with e i = Bi_ I (1) . Since the 

functions Aj(~) may be explicitly written, as was done in [3], this means that 

a11 the constants o i are computable. 

To p rove  Th.  2 we u s e  Lemna 2 and e x a c t l y  t h e  same method  o f  p r o o f  a g a i n ,  
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DE KONINCK - IVIC 7 

noting that similarly as before the hypothesis that f(pk) < Ck assures that 

R > 1 in Lemma 2, so that (2.7) holds uniformly for Izl ~ 1 if f satisfies 

the hypothesis of Th. 2; Observe next that f(n) = 0 if and only if n is 

square-free, so that (see [8] for a proof) 

(2 .n )  )[ / (~)  = 7. ~2(n) = ~ =  + o(= I n  exp (-o ~(=))) , 
nsz, fCn) = o nsz 

o is a positive constant and 6(~) = log3/5z. (loglogz) -I/5 . where 

dividing (2.7) by z we obtain uniformly for [z I < i 

N 
(2.14) l' /(n)-1 = xCF(.) - 6/~ 2).'1+ =~./210g-2 . ! ~(.)log.-j 

n~ j o 

o(=~/2 i~. i-i logRe z-N-3 

where we have set again Bj (~) = Aj(=) I z 

x) + o (=I/2 I~ F1exp( -o ~ (x))) , 

Therefore 

x+ 

(though of course AjCz) of Lemma i 
may be a different function from Aj(z) of Les, ma 2). 

Now we integrate (2.14) over ~ from e(x) = z -2/3 to 1 , exactly as 

was done in the proof of Th. i. The left-hand side becomes then again 

(2.1s) Z' l / f ( , )  + o(~ I /3)  , 

and likewise 

(2.16) 

(2.17) 

1 1 

r Cx) o 

1 

I Bj(z) logZx, ds = Bj(1) logx. Lj(x) , 

o 

where Lj(z) is a slowly oscillating function asymptotic to 1/log logz . In- 

tegrating the error terms on the right-hand side of (2.14) we obtain 
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8 DE KONINCK - IVIC 

(2.18) 0(=I/21og'~I-I=) + O(zl /21ogz.  exp(-o6(z)))  = o (z l /21og-S- lz )  , 

= a  f i ~ l l y  
1 1 r (=) 

(2.19) .[==(Y(*) - 6/. 2)=-za~ ==.[ (F(=) - 6/v z) z'la~- = 
c( ) o o 

(F(=) - 6/~ 2) - 1  d= 

= X  

1 

I CF(r - 61, 2) =-1~ , o(=r = %= + o(= I/3) , 
O 

since (F(=) - 6/v 2) z -1 iS continuous in [ 0 , i ]  because F(0) = 6/~r 2 . 

(2.15) - (2.19) we obtain Th. Z with 

I 

o o = ICF(~) - 61~ 2) =-la= , o j  = ~j_I(1) 
o 

Combing 

for  d z l .  

In order to prove Theorem 3, we proceed as follows. Define for  every pair  

( 0 1 , 0 2 )  of non-negative rea l  mmbers ao(ol,o2) as the inf imm of  rea l  n~bers  

o > 1/2 for which 

(2.20) S= ~>2 p~O~) p2~Ok) -ka < + |  
P* 

i f  t h i s  se t  i s  r ~ - e ~ p t y ,  shd 

non-negative pairs  of  rea l  nt~bers 

Oo(Pl,P2) = + == otherwise. Let E be the set of 

( p l , P 2 )  f o r  w h i c h  O o ( p z , p 2 )  < 1 . 

Suppose now p I > 1 and P2 ;z 1 . The~ the hypothesis of the theorem 

i J~ ly  

~ ? 2Ok 2C -2o.  C C s~ p p p-ko ~p~cp 2 p ~(1 p-o) < 
= - P l  P2 + | 

p, ~2 p 

C C -a 
for ever)" a > 1/2 if plP2 p �9 1 - B for some fixed 0<8<1 . I f  a z 2 / 3  , 
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P~. < ("~-0- 2:I13)~IC " P2 < (Ir~ " ZI13}IIC " than we obta~ 

C C ~ p O  
Pl ~ < ~ 22/3 

Since Ol~ 21/3 > i , this means that CP,P) ~ E for some fixed 

By the lemma of I)elange [2], p. 108, this implies that 

p k= l  

p > l .  

i s  a w e l l - d e f i n e d  f u n c t i o n  f o r  [ s l ~  P , lu l  ~ P , o = Pea > ooCp,p ) , a n a l y t i c  

i n  a . Proceeding f u r t h e r  s i m i l a r l y  as was donb by Delange i n  [ 3 ] ,  we o b t a i n  

t h a t  f o r  ever), f i xed  i n t e g e r  N > 0 

Cz.zl) X ~C.)/C.) = C l o g = ) , u - 1  = A.jCz, u) l o g - d =  + RC=,8,u) , 

where Aj(z,u) (d = I, .... N) is an analytic function of z and u for 

I~ l  < p , c o n t = ~  f =  I~1 < p , I - I  ~ p , s u b  that  Ad(=,O ) = 0 and 

(2.2Z) R ( x , ~ u )  = 0 ( = ( l o g = )  Re ~ "  U -  2) , 

I = [ < p  , 

where the  O-constant  i s  unifom in z and u , 

We d i f f e r e n t i a t e  (2.21) wi th  r e s p e c t  t o  s ,  use (2.22) and Cauch~s i n e q u a l i t y  

f o r  t he  d e r i v a t i v e  of  an a n a l y t i c  f unc t i on  to  e s t ima t e  the  e r r o r  t e r n ,  and then  

s e t  x = 1 , which i s  p o s s i b l e  s ince  0 > I . This g ives  u n i s  f o r  {"l ~ P 

N * 

.&z j=O 

whe~ cdCu) = -~ ~ z=l  ' ~ C u )  "- AjCl ,  u) 

Note again t h a t  f(n) = 0 i f  n = I and p o s s i b l y  i f  n i s  square-f~11,  
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so  t h a t ,  

Z gCn) << Z ~(n) << logx [ 1 << xl /21ogx , 
n:~x,f(n) : 0 n<z,f(n) : 0 n<z,n equ~efuZZ 

which i m p l i e s  by [2.23) 

N 
(2.24) Z' g(n) u f (n)  -1 : m Z 

n~x j :O 
logU-l-Jx (OjC u) + BjCu) log logx) 

+ O(xlul - f log R e u - N - 2 x )  + o(luI-Ixl /21ogx) 

We proceed now as in the proof of Th. i, ,integrating (2.24) over u real from 

r = z -2/3 to 1 , and the proof is very much the same. We note here only 

that the integral of the left-hand side of C2.24) is 

z' : oC:1'31oglog:) , 
n~z n ~  ngz  

since g(n) << ~ (n ) ,  fCn) z I i f  f(n) r 0 and Z QCn) << x log log  z . The 
n&x 

integrals of the main terms on the right-hand side of (2.24) are handled exactly the 

same way as was done in the proof of Th. 1, the integral of the error term is 

O(x log-Nz) , so that af ter  col lecting a l l  the terms we obtain the conclusion of 

the theorem. 

5. Applications and some remarks 

Theorem 1 can be obviously applied to additive functions ~(n) and n(n) 

(and in both cases [' = Z ), since ~(pk) = i and ~(pk) = k for all 
n~ 2~n~z 

primes p and integers k z 1 . Therefore (i.i) and (1.2) may. be replaced with 

the sharper asy~totic formula furnished by Th. i. 

The proof of Th. 1 uses essentially the sane method presented by De 
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Koninck in [13, only now instead of a result of A. Selberg [6] Delange's Lemma 1 

is used. This lemma is much sharper, but also more restrictive than Selber$'s 

result, so that we had to make a hypothesis (and our condition that f(pk) < Ck 

for k'z 2 is easy to verify) which would ensure that R of Lesmm 1 is strictly 

greater than unity, so that (2.4) holds uniformly for I~I ~ 1 . If f were not 

only integer-valued, then /(n) would have a critical point for z = 0 and the 

functions Aj (~) might not bej. analytic for ~ = 0 , which would produce great 

difficulties in estimating I B$(z) logZzdz, since r has to be taken small. 

c (=) 

A result like Th. 2 seems to be completely new. From Delange's proof of 

Lenmm 2 it is seen that F(z) = ~ (I + Z g~(pk) p-k) , where the function 
p k=2 

gz(n) = | Zn~(d)~'f(n/d) is the M~bius inverse of ~(n) . Taking in particular 
d 

f(n) = ~(n) - ~(n) , it is seen that this function satisfies the hypothesis of 

Th. 2 and that  

(3.l) ~(~)= ~ ( l - 1 / p ) ( l + l / t - , ) ) :  | ~ k �9 
p ~=0 

where i t  is well-known (see [33 end [5]) that 

(3.2) a~ : i ~  - I  Z 1 , 
n~, n (n)-~ (n) :~ 

which means that ~ is the density of integers n for which ~(n) - ,,,(n) = k . 

Therefore in the case when f ( n )  = a(n) - ~(n) one obtains (2.2) (noting that 

d = i/~(2) = 6/~ 2) with 
O 

I I 

0 0 

and a l l  the other e i ' s  are also computable. 
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One cou ld  a l s o  g e n e r a l i z e  Th. 2 by suppos ing  t h a t  f ( p )  = . . .  = f ( p P - 1 )  = 0 , 

l ( p  r )  = 1 and O < f ( p k )  < Ck f o r  k z r + 1 , where  r z 2 i s  a f i x e d  n a t u r a l  

number.  In  t h a t  c a s e  we cou ld  f i n d  an e s t i m a t e  f o r  [ ~ f (n )  (u s ing  the  methods 
n<_z 

o f  Delange [u ] ]  which  would l e a d  t o  t h e  fo rmula  (2 .2)  w i t h  x 1 / r  i n s t e a d  o f  z 1/2 

Also it may be observed that Theorem 3 may be applied to g(n) = R(n) , 

f(n) = ~(n) , thus improving the asymptotic formula for [' fl(n)/~(n) proved 

by De Koninck [2]. 

Finally we wish to thank Prof. H. Delanse for his suggestions and criticism 

of an earlier version of this paper. 
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