SUMS OF RECIPROCALS OF CERTAIN ADDITIVE FUNCTIONS

Jean-Marie De Koninck and Aleksandar Ivić

We obtain sharp estimates for sums of reciprocals and sums of quotients of certain non-negative integer-valued additive arithmetical functions.

1. Introduction

In this paper we give sharp estimates for the sums $\sum_{n \le x} 1/f(n)$ and $\sum_{n \le x} g(n)/f(n)$, where f(n) and g(n) belong to a certain class of nonnegative, integer-valued additive arithmetical functions, (here \sum ' denotes summation over those n for which $f(n) \neq 0$). In particular, we improve over the following asymptotic formulas proved in [1] and [2], respectively:

(1.1)
$$\sum_{n \le x} 1/\omega(n) = x \sum_{i=1}^{N} \frac{a_i}{(\log \log x)^i} + \theta\left(\frac{x}{(\log \log x)^{N+1}}\right) ,$$

(1.2)
$$\sum_{n\leq x} \alpha(n)/\omega(n) = x+x \sum_{i=1}^{N} \frac{b_i}{(\log\log x)^i} + O\left(\frac{x}{(\log\log x)^{N+1}}\right),$$

where $\omega(n)$ and $\Omega(n)$ denote the number of distinct prime divisors and the number of all prime divisors of n respectively, all the a_i 's and b_i 's are computable constants, and $N \ge 1$ is an arbitrary fixed integer.

One will observe that
$$\sum_{i=1}^{N} \frac{a_i}{(\log \log x)^i} = a_1 L(x) ,$$

where for $x \ge x_0$ the function L(x) is positive, continuous, and for every c > 0 has the property

0025-2611/80/0030/0329/\$02.60

(1.3)
$$\lim_{x \to \infty} L(cx) / L(x) = 1$$

Such functions L(x) are called slowly oscillating (or slowly varying; see [7] for a comprehensive account), and their canonical representation is

(1.4)
$$L(x) = \rho(x) \exp \left(\int_{x_0}^{x} \delta(t) t^{-1} dt \right)$$

where $\rho(x)$ and $\delta(x)$ are continuous for $x \ge x_0$, $\lim_{x \to \infty} \rho(x) = A > 0$ and $\lim_{x \to \infty} \delta(x) = 0$. All slowly oscillating functions that appear in the sequel admit $x \to \infty$ an asymptotic expansion in terms of negative powers of $\log \log x$, that is to say, for every fixed integer $M \ge 1$ there exist constants $A_1, A_2, \ldots, A_{M-1}$ such that

$$L(x) = \frac{1}{\log \log x} + \frac{A_1}{(\log \log x)^2} + \dots + \frac{A_{M-1}}{(\log \log x)^M} + O\left(\frac{1}{(\log \log x)^{M+1}}\right)$$

2. Theorems and proofs

Theorem 1. Let f(n) be a non-negative, integer-valued additive arithmetical function such that for every prime p, f(p) = 1 and $f(p^k) < Ck$ for every $k \ge 2$ and some fixed C > 0. Then for every fixed integer $N \ge 1$ there exist computable constants c_1, \ldots, c_N such that

(2.1)
$$\sum_{n \le x} 1/f(n) = c_1 x L_1(x) + \ldots + \frac{c_N x L_N(x)}{\log^{N-1} x} + O\left(\frac{x}{\log^N x}\right),$$

where every $L_j(x)$ (j = 1, ..., N) is a slowly oscillating function asymptotic to $1/\log \log x$.

<u>Theorem 2</u>. Let f(n) be a non-negative, integer-valued additive arithmetical function such that for every prime p, f(p) = 0, $f(p^2) = 1$, and $0 < f(p^k) < Ck$ for every $k \ge 3$ and some fixed C > 0. Then for every fixed integer $N \ge 1$ there exist computable constants e_0, e_1, \ldots, e_N such that

(2.2)
$$\sum_{n \le x} \frac{1}{r(n)} = e_0 x + \frac{e_1 x^{1/2} L_1(x)}{\log x} + \dots + \frac{e_N x^{1/2} L_N(x)}{\log^N x} + O\left(\frac{x^{1/2}}{\log^{N+1} x}\right),$$

where every $L_j(x)$ (j=1,...,N) is a slowly oscillating function asymptotic to $1/\log \log x$.

<u>Theorem 3</u>. Let f and g be two non-negative, integer-valued additive arithmetical functions such that for all primes p and integers $k \ge 2, f(p) = g(p) = 1$ $f(p^k) < Ck$, $g(p^k) < Ck$, where C is a positive constant. Then for every fixed integer $N \ge 1$ there exist computable constants a_j, b_j (j = 1, ..., N) such that

$$(1) \quad \sum_{n \le x} \frac{g(n)}{f(n)} = x(a_1 + b_1 L_1(x) + \frac{a_2 + b_2 L_2(x)}{\log x} + \ldots + \frac{a_N + b_N L_N(x)}{\log^{N-1} x} + O\left(\frac{x}{\log^N x}\right),$$

where every $L_j(x)$ (j = 1, ..., N) is a slowly oscillating function asymptotic to $1/\log \log x$.

<u>Proofs</u>. We shall use two deep results of H. Delange (proved in [3] and [4] respectively), which we state here as

Lemma 1. Let f(n) be a non-negative, integer-valued additive arithmetical function such that f(p) = 1 for every prime p. Let $\sigma_0(\rho)$ denote for every $\rho \ge 0$ the infimum of real numbers $\sigma > 1/2$ for which

(2.3)
$$\sum_{\substack{p,k\geq 2\\p,k\geq 2}} p^{f(p^k)} p^{-k\sigma} < +\infty$$

if this set is non-empty (and $\sigma_0(\rho) = +\infty$ otherwise), and let E be the set of all $\rho \ge 0$ for which $\sigma_0(\rho) < 1$ and R the supremum of the set E (finite or $+\infty$). Then for every fixed integer $N \ge 0$ there exist functions A_0, A_1, \dots, A_N analytic for |z| < R and continuous for $|z| \le R$ such that $A_0(0) = A_1(0) = \dots = A_N(0) = 0$ and

(2.4)
$$\sum_{n \leq x} z^{f(n)} = x(\log x)^{z-1} \left(\sum_{j=0}^{N} \frac{A_j(z)}{(\log x)^j} + O\left(\frac{1}{\log^{N+1} x}\right) \right)$$
,

where for every $\rho > 0$ from E the O-constant is uniform for $|z| \leq \rho$.

Lemma 2. Let f(n) be a non-negative, integer-valued additive arithmetical function such that for every prime p, f(p) = 0 and $f(p^2) = 1$. For every $\rho \ge 0$ define a multiplicative function h_{g} by

(2.5)
$$h_{\rho}(p^{k}) = \begin{cases} \rho^{f(p^{k})} + \rho^{f(p^{k-1})} & f(p^{k}) \neq f(p^{k-1}) \\ \\ 0 & & f(p^{k}) = f(p^{k-1}) \end{cases}$$

and for every $\rho\geq 0$ let $\sigma_{_{0}}(\rho)$ be the infimum of real numbers $\sigma>1/3$ for which

(2.6)
$$\sum_{p,k\geq 3} h_{\rho}(p^k) p^{-k\sigma} < +\infty$$

if this set is non-empty (and $\sigma_0(\rho) = +\infty$ otherwise). Let further I be the set of $\rho \ge 0$ for which $\sigma_0(\rho) < 1/2$, and R the supremum of I (finite or $+\infty$). Then for every fixed integer $N \ge 0$ there exist functions F, A_0, A_1, \dots, A_N analytic for |z| < R and continuous for $|z| \le R$ such that $F(0) = 6/\pi^2, A_0(0) = \dots = A_N(0) = 0$ and

$$(2.7) \qquad \sum_{n \le x} z^{f(n)} = x F(z) + x^{1/2} (\log x)^{z-2} \left(\sum_{j=0}^{N} \frac{A_j(z)}{(\log x)^j} + 0 \left(\frac{1}{\log^{N+1} x} \right) \right),$$

where for every $\rho > 0$ from I the O-constant is uniform for $|z| \le \rho$.

We begin now the proof of Th. 1 by observing that if f satisfies the hypothesis of Th. 1, then Lemma 1 may be applied with some R > 1, and so (2.1) holds uniformly in z for $|z| \le 1$. To see this note that if $\rho \ge 1$

7.

$$\sum_{\substack{p,k\geq 2}} \rho^{f(p^{\kappa})} p^{-k\sigma} \leq \sum_{\substack{p,k\geq 2}} (\rho^{C} p^{-\sigma})^{k} = \sum_{p} (\rho^{C} p^{-\sigma})^{2} / (1 - \rho^{C} p^{-\sigma}) < + \infty$$

for every $\sigma>1/2$, provided that $\rho^{C}p^{-\sigma}<1-B$ for some fixed 0< B<1 . if $\sigma\geq 2/3$ then

$$\rho^{C} p^{-\sigma} \leq \rho^{C} 2^{-2/3} < 5/6$$

for $\rho < (\frac{5}{6}2^{2/3})^{1/C}$. Since C is fixed this last number is greater than unity, and thus Lemma 1 applies with some R > 1.

Now f(n) = 0 for $n \le x$ if n = 1 or possibly if n is one of the $O(x^{1/2})$ "square-full" numbers not exceeding x (numbers of the form $n = p_1^{a_1} \dots p_i^{a_i}$ where $a_1 \ge 2, \dots, a_i \ge 2$). If $f(n) \ne 0$, then $f(n) \ge 1$ since f is integer-valued and non-negative. Dividing (2.4) by x and setting $B_j(x) = A_j(x) / x$ we see that for $|x| \le 1$ we have uniformly

(2.8)
$$\sum_{n \le x} x^{f(n)-1} = x(\log x)^{x-1} \left(\sum_{j=0}^{N} \frac{B_j(x)}{(\log x)^j} + O\left(\frac{1}{x(\log x)^{N+1}}\right) \right)$$

We take now s real and integrate (2.8) from $\varepsilon(x) = x^{-2/3}$ to 1 over s. The left-hand side of (2.8) becomes after integration

(2.9)
$$\sum_{n \le x} \frac{1}{f(n)} - \sum_{n \le x} \frac{(\varepsilon(x))^{f(n)}}{n \le x} / f(n) = \sum_{n \le x} \frac{1}{f(n)} + O(x^{1/3}),$$

since $(\varepsilon(x))^{f(n)} \ll \varepsilon(n)$ if $f(n) \neq 0$.

Integrating the right-hand side of (2.8) it is seen that the integral of the error term is

(2.10)
$$\int_{\varepsilon(x)}^{1} x \log^{z-N-2} x \cdot \frac{dz}{z} \ll x \log^{-N} x \cdot \frac{dz}{z}$$

When integrating the main terms on the right-hand side of (2.8) we encounter integrals of the form

(2.11)
$$x(\log x)^{-1-j} \int_{\varepsilon(x)}^{1} B_{j}(s) \log^{s} x \cdot ds = x(\log x)^{-1-j} \int_{0}^{1} B_{j}(s) \log^{s} x \cdot ds + O(x^{1/3})$$

,

since $B_j(z) = A_j(z) / z$ is an analytic function for $|z| \le 1$ (because R > 1and $A_j(0) = 0$), so that for $x \ge x_0$

$$\sum_{o}^{\varepsilon(x)} B_{j}(z) \log^{z} x \cdot dz \ll (\log x)^{\varepsilon(x)} \int_{o}^{\varepsilon(x)} |B_{j}(z)| dz$$

$$<< \exp(x^{-2/3} \log \log x) \cdot \varepsilon(x) \max_{z \in [0,1]} |B_{j}(z)| << \varepsilon(x) = x^{-2/3} .$$

Integration by parts gives for every fixed integer $M \ge 1$

$$H_{j}(x) = \int_{0}^{1} B_{j}(z) \log^{z} x \cdot dz = \frac{B_{j}(z) \log^{z} x}{\log \log x} \Big|_{0}^{1} + \dots + (-1)^{M-1} \frac{B_{j}^{(M)}(z) \log^{z} x}{(\log \log x)^{M-1}} \Big|_{0}^{1}$$

$$(2.12) + O\left(\int_{0}^{1} \frac{|B_{j}^{(M+1)}(z)| \log^{z} x}{(\log \log x)^{M+1}} dz\right) = \frac{B_{j}(1) \log x}{\log \log x} + \dots + (-1)^{M-1} \frac{B_{j}^{(M)}(1) \log x}{(\log \log x)^{M}}$$

$$+ O\left(\frac{\log x}{(\log \log x)^{M+1}}\right),$$

which means that $L_j(x) = H_j(x) / (B_j(1) \log x)$ is a slowly oscillating function asymptotic to $1/\log \log x$ which admits an expansion in terms of negative powers of $\log \log x$. From (2.9) - (2.12) Th. 1 follows with $c_i = B_{i-1}(1)$. Since the functions $A_j(x)$ may be explicitly written, as was done in [3], this means that all the constants o_i are computable.

To prove Th. 2 we use Lemma 2 and exactly the same method of proof again,

noting that similarly as before the hypothesis that $f(p^k) < Ck$ assures that R > 1 in Lemma 2, so that (2.7) holds uniformly for $|z| \le 1$ if f satisfies the hypothesis of Th. 2. Observe next that f(n) = 0 if and only if n is square-free, so that (see [8] for a proof)

(2.13)
$$\sum_{n \le x, f(n) = 0} z^{f(n)} = \sum_{n \le x} \mu^2(n) = \frac{6}{\pi^2} x + O(x^{1/2} \exp(-c \delta(x))) ,$$

where c is a positive constant and $\delta(x) = \log^{3/5} x \cdot (\log \log x)^{-1/5}$. Therefore dividing (2.7) by z we obtain uniformly for $|z| \le 1$

(2.14)
$$\sum_{n \le x} x^{f(n) - 1} = x(F(z) - 6/\pi^2) z^{-1} + x^{1/2} \log^{-2} x \cdot \sum_{j=0}^{N} B_j(z) \log^{z-j} x + O(x^{1/2} |z|^{-1} \log^{\operatorname{Re} z - N - 3} x) + O(x^{1/2} |z|^{-1} \exp(-c \delta(x))),$$

where we have set again $B_j(z) = A_j(z) / z$ (though of course $A_j(z)$ of Lemma 1 may be a different function from $A_j(z)$ of Lemma 2).

Now we integrate (2.14) over z from $\varepsilon(x) = x^{-2/3}$ to 1, exactly as was done in the proof of Th. 1. The left-hand side becomes then again

(2.15)
$$\sum_{\substack{n \le x}} 1/f(n) + O(x^{1/3}) ,$$

and likewise

(2.16)
$$\int_{\varepsilon(x)}^{1} B_{j}(x) \log^{2} x \cdot dx = \int_{0}^{1} B_{j}(x) \log^{2} x \cdot dx + O(\varepsilon(x))$$

(2.17)
$$\int_{0}^{1} B_{j}(z) \log^{z} x \cdot dz = B_{j}(1) \log x \cdot L_{j}(x) ,$$

where $L_j(x)$ is a slowly oscillating function asymptotic to $1/\log \log x$. Integrating the error terms on the right-hand side of (2.14) we obtain

$$(2.18) \qquad O(x^{1/2} \log^{-N-1} x) + O(x^{1/2} \log x \cdot \exp(-c \,\delta(x))) = O(x^{1/2} \log^{-N-1} x)$$

and finally
(2.19)
$$\int_{\varepsilon(x)}^{1} x(F(z) - 6/\pi^2) z^{-1} dz = x \int_{0}^{1} (F(z) - 6/\pi^2) z^{-1} dz - x \int_{0}^{\varepsilon(x)} (F(z) - 6/\pi^2) z^{-1} dz$$

$$= x \int_{0}^{1} (F(z) - 6/\pi^2) z^{-1} dz + O(x \varepsilon(x)) = e_0 x + O(x^{1/3}) ,$$

since $(F(s) - 6/\pi^2) s^{-1}$ is continuous in [0,1] because $F(0) = 6/\pi^2$. Combining (2.15) - (2.19) we obtain Th. 2 with

$$e_{o} = \int_{0}^{1} (F(z) - 6/\pi^{2}) z^{-1} dz , e_{j} = B_{j-1}(1)$$

for $j \ge 1$.

In order to prove Theorem 3, we proceed as follows. Define for every pair (ρ_1, ρ_2) of non-negative real numbers $\sigma_0(\rho_1, \rho_2)$ as the infimum of real numbers $\sigma > 1/2$ for which

(2.20)
$$S = \sum_{p,k\geq 2} \rho_1^{g(p^k)} \rho_2^{f(p^k)} p^{-k\sigma} < +\infty$$

if this set is non-empty, and $\sigma_0(\rho_1,\rho_2) = +\infty$ otherwise. Let E be the set of non-negative pairs of real numbers (ρ_1,ρ_2) for which $\sigma_0(\rho_1,\rho_2) < 1$.

Suppose now $\rho_1 \geq 1$ and $\rho_2 \geq 1$. Then the hypothesis of the theorem imply

$$S \leq \sum_{p,k \geq 2} \rho_1^{Ck} \rho_2^{Ck} p^{-k\sigma} = \sum_p \rho_1^{2C} \rho_2^{2C} p^{-2\sigma} / (1 - \rho_1^C \rho_2^C p^{-\sigma}) < + \infty$$

for every $\sigma > 1/2$ if $\rho_1^C \rho_2^C p^{-\sigma} \le 1 - B$ for some fixed $0 \le B \le 1$. If $\sigma \ge 2/3$,

$$\begin{split} \rho_1 < (\frac{9}{10} \ 2^{1/3})^{1/C} , \ \rho_2 < (\frac{9}{10} \ 2^{1/3})^{1/C} , \ \text{then we obtain} \\ \rho_1^C \ \rho_2^C < \frac{81}{100} \ 2^{2/3} \le \frac{81}{100} \ p^{\sigma} \end{split}$$

Since $\frac{9}{10} 2^{1/3} > 1$, this means that $(\rho, \rho) \in E$ for some fixed $\rho > 1$. By the lemma of Delange [2], p. 108, this implies that

$$G(s,z,u) = \prod_{p} (1 + \sum_{k=1}^{\infty} z^{g(p^{k})} u^{f(p^{k})} p^{-ks}) (1 - p^{-s})^{zu}$$

is a well-defined function for $|z| \le \rho$, $|u| \le \rho$, $\sigma = \operatorname{Re} s > \sigma_0(\rho, \rho)$, analytic in s. Proceeding further similarly as was done by Delange in [3], we obtain that for every fixed integer $N \ge 0$

(2.21)
$$\sum_{n \le x} z^{g(n)} u^{f(n)} = x(\log x)^{gu-1} \sum_{j=0}^{N} A_j(s,u) \log^{-j} x + R(x,s,u) ,$$

where $A_j(z,u)$ (j = 1,...,N) is an analytic function of z and u for $|z| < \rho$, $|u| < \rho$, continuous for $|z| \le \rho$, $|u| \le \rho$, such that $A_j(z, 0) = 0$ and

(2.22)
$$R(x, z, u) = O(x(\log x)^{\operatorname{Re} zu - N - 2}),$$

where the O-constant is uniform in x and u.

We differentiate (2.21) with respect to z, use (2.22) and Cauchy's inequality for the derivative of an analytic function to estimate the error term, and then set z = 1, which is possible since $\rho > 1$. This gives uniformly for $|u| \le \rho$

$$(2.23)\sum_{n\leq x} g(n) u^{f(n)-1} = x \sum_{j=0}^{N} \log^{u-1-j} x \left(C_{j}(u) + B_{j}(u) \log \log x \right) + O\left(|u|^{-1} x \log^{\operatorname{Re} u - N - 2} x \right)$$

where $C_j(u) = \frac{1}{u} \frac{\partial A_j(z,u)}{\partial z} \Big|_{z=1}$, $B_j(u) = A_j(1,u)$

Note again that f(n) = 0 if n = 1 and possibly if n is square-full,

so that,

$$\sum_{\substack{n \leq x, f(n) = 0}}^{\sum} g(n) \ll \sum_{\substack{n \leq x, f(n) = 0}}^{\sum} \Omega(n) \ll \log x \qquad \sum_{\substack{n \leq x, n \text{ squarefull}}}^{\sum} 1 \ll x^{1/2} \log x$$

which implies by (2.23)

$$(2.24) \sum_{\substack{n \le x}} g(n) u^{f(n)-1} = x \sum_{j=0}^{N} \log^{u-1-j} x (C_j(u) + B_j(u) \log \log x)$$

+
$$O(x|u|^{-1}\log^{\operatorname{Re} u - N - 2}x) + O(|u|^{-1}x^{1/2}\log x)$$

We proceed now as in the proof of Th. 1, integrating (2.24) over u real from $\varepsilon(x) = x^{-2/3}$ to 1, and the proof is very much the same. We note here only that the integral of the left-hand side of (2.24) is

$$\sum_{n \le x} \frac{g(n)}{f(n)} - \sum_{n \le x} \frac{g(n)}{f(n)} (\varepsilon(x))^{f(n)} = \sum_{n \le x} \frac{g(n)}{f(n)} + O(x^{1/3} \log \log x) ,$$

since $g(n) << \Omega(n)^{2}$, $f(n) \geq 1$ if $f(n) \neq 0$ and $\sum_{\substack{n \leq x \\ n \leq x}} \Omega(n) << x \log \log x$. The integrals of the main terms on the right-hand side of (2.24) are handled exactly the same way as was done in the proof of Th. 1, the integral of the error term is $O(x \log^{-N} x)$, so that after collecting all the terms we obtain the conclusion of the theorem.

3. Applications and some remarks

Theorem 1 can be obviously applied to additive functions $\omega(n)$ and $\Omega(n)$ (and in both cases $\sum_{\substack{n \leq x \\ 2 \leq n \leq x}}^{i} = \sum_{\substack{n \leq x \\ 2 \leq n \leq x}}$), since $\omega(p^k) = 1$ and $\Omega(p^k) = k$ for all primes p and integers $k \geq 1$. Therefore (1.1) and (1.2) may be replaced with the sharper asymptotic formula furnished by Th. 1.

The proof of Th. 1 uses essentially the same method presented by De

Koninck in [1], only now instead of a result of A. Selberg [6] Delange's Lemma 1 is used. This lemma is much sharper, but also more restrictive than Selberg's result, so that we had to make a hypothesis (and our condition that $f(p^k) < Ck$ for $k \ge 2$ is easy to verify) which would ensure that R of Lemma 1 is strictly greater than unity, so that (2.4) holds uniformly for $|z| \le 1$. If f were not only integer-valued, then $z^{f(n)}$ would have a critical point for z = 0 and the functions $A_j(z)$ might not be analytic for z = 0, which would produce great difficulties in estimating $\int_{\varepsilon(z)}^{z} B_j(z) \log^z x dz$, since $\varepsilon(x)$ has to be taken small.

A result like Th. 2 seems to be completely new. From Delange's proof of Lemma 2 it is seen that $F(z) = \prod_{p} (1 + \sum_{k=2}^{\infty} g_{g}(p^{k}) p^{-k})$, where the function $g_{g}(n) = \sum_{d \mid n} \mu(d) z^{f(n/d)}$ is the Möbius inverse of $z^{f(n)}$. Taking in particular $f(n) = \Omega(n) - \omega(n)$, it is seen that this function satisfies the hypothesis of Th. 2 and that

(3.1)
$$F(z) = \prod_{p} (1 - 1/p) (1 + 1/(p-z)) = \sum_{k=0}^{\infty} d_{k} z^{k}$$

where it is well-known (see [3] and [5]) that

$$(3.2) d_k = \lim_{x \to \infty} x^{-1} \sum_{n \le x, \Omega(n) - \omega(n) = k} 1,$$

which means that d_k is the density of integers *n* for which $\Omega(n) - \omega(n) = k$. Therefore in the case when $f(n) = \Omega(n) - \omega(n)$ one obtains (2.2) (noting that $d_{\alpha} = 1/\zeta(2) = 6/\pi^2$) with

$$e_{0} = \int_{0}^{1} (F(z) - 6/\pi^{2}) z^{-1} dz = \int_{0}^{1} \sum_{k=1}^{\infty} d_{k} z^{k-1} dz = \sum_{k=1}^{\infty} d_{k}/k ,$$

and all the other e_i 's are also computable.

One could also generalize Th. 2 by supposing that $f(p) = \ldots = f(p^{r-1}) = 0$, $f(p^r) = 1$ and $0 < f(p^k) < Ck$ for $k \ge r+1$, where $r \ge 2$ is a fixed natural number. In that case we could find an estimate for $\sum_{n\le x} z^{f(n)}$ (using the methods of Delange [4]) which would lead to the formula (2.2) with $x^{1/r}$ instead of $x^{1/2}$.

Also it may be observed that Theorem 3 may be applied to $g(n) = \Omega(n)$, $f(n) = \omega(n)$, thus improving the asymptotic formula for $\sum_{n \le x} \Omega(n)/\omega(n)$ proved by De Koninck [2].

Finally we wish to thank Prof. H. Delange for his suggestions and criticism of an earlier version of this paper.

REFERENCES

[1] De Koninck, J.M., On a class of arithmetical functions, Duke Math. Journal, (39) 1972, 807-818

[2] De Koninck, J.M., Sums of quotients of additive functions, Proc. Amer. Math. Soc. (44) 1974, 35-38

[3] Delange, H., Sur des formules de Atle Selberg, Acta Arith., (19) 1971, 105-146

[4] Delange, H., Sur un théorème de Rényi III, Acta Arith., (23), 1973, 153-182

[5] Rényi, A., On the density of certain sequence of integers, Publ. de l'Inst. Math. (Belgrade), (8), 1955, 157-162.

[6] Selberg, A., Note on a paper by L.G. Sathe, J. Indian Math. Soc., (18) 1954, 83-87

[7] Seneta, E., Regularly varying functions, LNM 508, Springer-Verlag, 1976

[8] Walfisz, A., Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Berlin, 1963 Jean-Marie De Koninck Département de Mathématiques Université Laval Québec, P.Q. Canada, GIK 7P4 Aleksandar Ivić * Rudarsko-geološki Fakultet Univerziteta u Beogradu Djušina 7 11000 Beograd, Yugoslavia

* Research financed by the Mathematical Institute of Belgrade and Republička Zaj. of Serbia

(Received July 10, 1979)