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SUMS OF RECIPROCALS OF CERTAIN ADDITIVE FUNCTIONS
Jean-Marie De Koninck and Aleksandar Ivié

We obtain sharp estimates for sums of reciprocals and sums of quotients of cer-
tain non-negative integer-valued additive arithmetical functions.

1. Introduction

In this paper we give sharp estimates for the sums J' 1/f(n} and
nsz

I' g)/f(n) , where f(n) and g(n) belong to a certain class of non-
nsz

negative, integer-valued additive arithmetical functions, (here J' denotes
summation over those n for which f(n) = 0). In particular, we improve over

the following asymptotic formulas proved in [1] and [2], respectively:

N a.
(1.1) "1uwn) =z s o( =2 ,
ngr 1221 (loglogz)® (1og10gx)'v+1

N b, \
1.2 ' am) /o) = L 40 3 .
@2 ngx (o) = o= 1:21 (log log z)* ' <(log log ac)”u,

where w(») and Q(n) denote the number of distinct prime divisors and the num-
ber of all prime divisors of n respectively, all the ai's and bi‘s are

computable constants, and ~21 is an arbitrary fixed integer.

N a.
One will observe that } ————3———{ = a,L(z) ,
i=1 (loglogx)

where for CEEN the function IL(z) 1is positive, continuous, and for every

e >0 has the property
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(1.3) lim L(ex) /L(x) = 1 .
oo o
Such functions L(x) are called slowly oscillating (or slowly varying;

see [7] for a comprehensive account), and their canonical representation is
x

(1.4) (=) = p(x)exp(j s8¢ttty

x
0

where p(x) and &(x) are continuous for T2z, lim p(x) = 4> 0 and
240

1im 6(2) = 0 . All slowly oscillating functions that appear in the sequel admit
I

an asymptotic expansion in terms of negative powers of loglogzx , that is to

say, for every fixed integer M21 there exist constants 4 1,A2, ves ,AM_ 1 such
that
A A
1 1 M-1 1
L(x) = + toae. + 0 ) .
loglog= (log log z)2 (log log :c)M (log log a:)M+1

2. Theorems and proofs

Theorem 1. Let f(n) be a non-negative, integer-valued additive arithme-
tical function such that for every prime p, f(p) = 1 and f‘(pk) < ¢k for every
k 22 and some fixed ¢ > 0 . Then for every fixed integer ¥ 2 1 there exist

computable constants eyseieosey such that

3

ey LN(x) z
7t (o)
log’ "=z

2.1 ' 1/f(n) = L
(2.1) né’c f(n) = e 2L, (x) + + logN:c

whete every L J.(x) (7 =1,...,N) 1is a slowly oscillating function asymptotic to

1/loglogx .

Theorem 2. Let f(n) be a non-negative, integer-valued additive arith-
metical function such that for every prime p, f(p) = 0, f(»?) =1, and
0 < f(pk) < Ck for every k 23 and some fixed ¢ > 0 . Then for every fixed
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integer N 2 1 there exist computable constants € 5815058 such that

1*° N
5 3131/2[,1(::) einn LN(:c) 1/2
(2.2) ''1/f(n) = b e 4, + +O‘ ) .
nex logx 10 g” z logml

where every L j (=) (4=1,...,N) 1is a slowly oscillating function asymptotic to

1/loglogz .

Theorem 3. Let f and g be two non-negative, integer-valued additive
arithmetical functions such that for all primes p and integers k 2 2,f(p) = g(p) =1
f(pk) < Ck , g(pk) < Ck , where C 1is a positive constant. Then for every fixed
integer N 2 1 there exist computable constants aj,bj G =1,...,F) such that

a, +b oL (x) aN+bNLN(:r) z
i(—%- = x(a + b (x) + —m—— ot logN‘lx ) 4 O(IOgNz

s

where every LJ. () (4 =1,...,N) 1is a slowly oscillating function asymptotic to

1/loglogx .

Proofs. We shall use two deep results of H. Delange (proved in [3] and

(4] respectively), which we state here as

Lemma 1. Let f(n) be a non-negative, integer-valued additive arithme-
tical function such that f(p) = 1 for every prime p . Let o, (p) denote for
every p 2 0 the infimum of real numbers o¢ > 1/2 for which

k
(2.3) Z pf(P )p-kc <+
P, k22

if this set is non-empty (and co(p) = += otherwise), and let E be. the set of
all p 2 0 for which °o(°) <1 and R the supremum of the set E (finite or
+ =), Then for every fixed integer ~¥ 2 0 there exist functions 4 oAy dy
analytic for |z| <R and continuous for |z s ® such that

A (0) =4,(0) = ... =4,00) =0 and
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4%,
Jj=0 (log x)'7

’

2.4 § ™ . z0gx)*?
<

n

)

7
10g1|7+1x
vhere for every o > 0 from E the O-constant is uniform for |z| sop .

Lemma 2. Let f(n) be a non-negative, integer-valued additive arithme-
tical function such that for every prime p, f(p) =0 and f(p?) =1 . For

every p 2 0 define a multiplicative function hp by

k k-1
FE) ) 68 = F65Y
(2.5) h @) =
0 e = 5

and for every p 2 0 let o (p) be the infimm of real mmbers o > 1/3 for
which
(2.6) X S TAARE

p, k23
if this set is non-empty (and 9, (p) = + » otherwise). Let further I be the set
of p 2 0 for which oo(p) <1/2 , and R the supremm of I (finite or + =),
Then for every fixed integer N 2 0 there exist functions F’Ao’A1" <Ay
analytic for |z| < B and continuous for |z] s R such that

F(0) = 6/n2 4, (0)

"

=A—N(0) = 0 and
AJ.(Z) 1
-t 0 N+1 ’
j=0 (logz)? 108"z

@.n 5 Z® :2r@) + 2M? Qogx)®?
nsx

whers for every p > 0 from I the O-constant is uniform for |z| sop .

We begin now the proof of Th. 1 by observing that if f satisfies the
hypothesis of Th. 1, then Lemma 1 may be applied with some & > 1, and so (2.1)
holds wniformly in z for |z| s1 . To see this note that if o 2 1
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K

) oI @ )p-kus I p c)k . 2/ a-Cp0) <4
pika2 p, k22 p

for every o > 1/2 , provided that o°p™® <1 - B for some fixed 0<B<1 .

if o 2 2/3 then

pCP‘O < pC 2'2/3 < 5/6

5,2/3,1/C . s gs : s R
for p < ('62 ) . Since ¢ is fixed this last number is greater than umity,
and thus Lemma 1 applies with some R > 1 .

Now f(n) =0 for nsx if n =1 or possibly if » is one of the
0(x1/ 2) "'square-full' numbers not exceeding x (numbers of the form
n= p:l... pzi where a, 2 2,...,a,22) . If f(n) =0, then f(n) 21 since
f is integer-valued and non-negative. Dividing (2.4) by 2 and setting

BJ. () = AJ. (3) /2 we see that for |z| <1 we have wniformly

¥ B,
@.8) 1AM z00g)* Y i®) +0{ - 1])
nszx §=0 {logz)’ s(logx)" "

2/3

We take now s real and integrate (2.8) from e(z) = = to 1 over

2z . The left-hand side of (2.8) becomes after integration

2.9 I Ufe) - D@ e = I vrm + oY,
nsx nsx nsx

since (@)™ <« em) if fm) =0 .

Integrating the right-hand side of (2.8) it is seen that the integral of

the error term is

1
(2.10) } z1log® ¥ 2z . i:— « zlog ¥z .
x)

€
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When integrating the main terms on the right-hand side of (2.8) we en-

counter integrals of the form
i 1
(2.11) z(logz) ¥ j Bj(z) log®z.ds = z(logz) * ™ J Bj(z) log®z. ds + O(:cl/a) ,
e(z) 0

since Bj(z) = Aj(z) /2 is an analytic function for |z| s 1 (because R > 1

and AJ.(O) = 0) , so that for x 2 z

e(x) e(x)
? Bj(z) log®x . dz << (log z)e(a:) j |Bj(z) | dz

[+] o]

~-2/3 2/3

<< exp(x log logx) . e(x) max |B.(z)]| << e(z) = =
2¢[0,11 7

el0,

Integration by parts gives for every fixed integer ¥ 21

(log log =)

1 ] 1 ™) a 1
B.(3)log" = M1 B4 (2) log" =
H.(:z)=JB.(z)logz.r.dz=—'L——1———— + ot (D
J Ja loglogz | (log logz)" " |_
: |BJ(.M+1) ()| 1og® = Bj (1) logx Mt s (1) log=z
(2.12)+OJ ey = {og oz & + .0t (=D -

(log log :::)M

.logz
+0 ( _logz
(log log :z:)M'*1
which means that La.(m) = HJ. =)/ (B 4 (1) logx) is a slowly oscillating function
asymptotic to 1/loglogx which admits an expansion in terms of negative powers
of .loglogx. From (2.9) - (2.12) Th. 1 follows with e, = B_l:_1 (1) . Since the
functions 4 J,(a) may be explicitly written, as was done in [3], this means that

all the constants o, are computable.

To prove Th. 2 we use Lenma 2 and exactly the same method of proof again,
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noting that similarly as before the hypothesis that f(pk) < Ck assures that
R >1 in Lemma 2, so that (2.7) holds uniformly for |z| =1 if f satisfies
the hypothesis of Th. 2: Observe next that f(n) = 0 if and only if n is

square~-free, so that (see [8] for a proof)

2.13) I AP ] e s s 0 e (es@))
nsz,f(n) =0 nsxe

where ¢ is a positive constant and $(x) = 10g3/ Se. (log logz)_l/ 5, Therefore

dividing (2.7) by =z we obtain wniformly for |z} <1

N .
(2.18) ML pre) - 612 2 s 22108722, | B.(2) log® Yz +
nsx j=0 9

0(x1/2|z|-110gRez_N'3z) + 0(3:1/2]3 riexp(-”(“))) ’

where we have set again B 1 () =4 o (2) /2 (though of course Aj(z) of Lemma 1

may be a different function from AJ. (8) of Lemma 2).

Now we integrate (2.14) over 2z fram e(x) = x-z/ 5 o1 , exactly as

was done in the proof of Th. 1. The left-hand side becomes then again

(2.15) I' V() + o=
nsx

and likewise

1 1
(2.16) J B, () 1ogz. ds = J B, (2) log®z.dz + 0(e(x)) ,
e(x) 0
1
(2.17) J B, () log®z.ds = B,(1) logz . L;(z) ,
o

where LJ. (x) 1is a slowly oscillating function asymptotic to 1/loglogz . In-

tegrating the error terms on the right-hand side of (2.14) we obtain
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2.18) 0?10 z) + 0" 2 10gz . expl-c §(x))) = 0(z 2108 1) ,
and finally
1 1 e(z)
(2.19) J 2(F(3) - 6/12) 8 1ds = z J (F(a) - 6/72) 2 Y ds - = j (F(z) - 6/n2) 5 Ldz
e(x) 0 °
1
=z j (F(s) - 6/v2) 2 da + O(@e(@)) = ez + 0% ,
]

since (F(s) - 6/72) 2~ is continuous in [0,1] because F(0) = 6/r2 . Combining

(2.15) - (2.19) we obtain Th. 2 with
1

e, = J(F(z) - 6/v2) 2 tdz , e; =B, ,(1)
-]

for 7 21.

In order to prove Theorem 3, we proceed as follows. Define for every pair
(pl,pz) of non-negative real mumbers °o(°1’°2) as the infimum of real numbers

¢ > 1/2 for which

k k
(2.20) 5= oi(p )péf(P Jpke v

p,Zzz

if this set is non-empty, and 0,(pys0,) = + = otherwise. Let E be the set of

non-negative pairs of real mmbers (pl,pz) for which 9, (o 1.92) <1.

Suppose now o 2 1 and Py 2 1 . Then the hypothesis of the theorem
imply

Ck Ck_-ko Z 2C 2C

-2 cc -
5s Py Py B =l 0y P /(- ey ) <t

Ds £22

for every o > 1/2 if pipgp-OSI-B for some fixed 0<B<1l . If o2 2/3,
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b, < (5 2HYC, 0, < (fp 2/HYC,  then ve cbtain

ce 81 ,2/3 8
P14 < 1052 < T P

Since

'1'96 223, 1, this means that (p,p) ¢ £ for some fixed p > 1 .

By the lemma of Delange (2], p. 108, this implies that

® k 3
lo,s = T 1+ ) @)@ ey (g _ preyau
2 =1

is a well-defined function for |z| sp , |u| sp , 0 = Rea > o,(p,p) , analytic
in & . Proceeding further similarly as was done by Delange in [3]), we obtain
that for every fixed integer ¥ 2 0

N
(2.21) nzzzg(") L0 . z(log z)**1 2 4;(5,u) 1089 2 + Rz 5,4) ,

J=0

vhere Aa.(z,u) (7 = 1,...,#) is an analytic function of 2 and u for |[s| <p ,

|u] < p , continuous for |a| <p , |#| s p , such that AJ.(x,O) =0 and
@.22) R(z,5,u) = 0(z(logz)RE™-¥-2
where the O-constant is uniformn in 2z and u .

We differentiate (2.21) with respect to 3, use (2.22) and Cauchy's inequality
for the derivative of an analytic function to estimate the error temm, and then
set 3 = 1, which is possible since p > 1 . This gives uniformly for |u| <o

N . .
@23)] g d P ez | 108 s (6;@) + B,(u) loglogz) + O(lu| "z 10g" 25

nsx J=0
M .(3,u)
where cj(u) = %—'7-3-;—-— , Bj(u) = Aa.(l,u)

8=1

Note again that f(n) = 0 if =» =1 and possibly if = is square-full,
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so that,

gi) << ] am) << logz I 1 << 2/

logx ,
nsx, f(n) =0 nsz, f(n) =0 nsz,n squarefull

which implies by (2.23)

N .
Y log -1~ (Cj W + B, (x) log log x)

28] g Wt ea
nsy J

o]

+ 0(:::]14|_1 logReu'N' 22y 4 O(lu['1 22 log x)

We proceed now as in the proof of Th. 1,.integrating (2.24) over u real from

-2/3

e(@) = x to 1 , and the proof is very much the same. We note here only

that the integral of the left-hand side of (2.24) is

THE- T HE @™ - b g o6 i)

<2

since g(n) << e@®)’, f(n) 21 if f(n) =0 and ] Q(n) << zloglog x . The
integrals of the main terms on the right-hand side 3?(2.24) are handled exactly the
same way as was done in the proof of Th. 1, the integral of the error term is

oz log'”ac) , so that after collecting all the terms we obtain the conclusion of

the theorem.

3. Applications and some remarks

Theorem 1 can be obviously applied to additive functions w(n) and Q(n)

(and in both cases }'= § ), since w(pk) =1 and n(pk) = k for all
nsx  2snsx

primes p and integers k 2 1 . Therefore (1.1) and (1.2) may. be replaced with
the sharper asymptotic formula furnished by Th. 1.

The proof of Th. 1 uses essentially the same method presented by De
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Koninck in [1], only now instead of a result of A. Selberg [6] Delange's Lemma 1
is used. This lemma is much sharper, but also more restrictive than Selberg's
result, so that we had to make a hypothesis (and our condition that f(pk) < Ck
for k'z 2 is easy to verify} which would ensure that R of Lemma 1 is strictly
greater than unity, so that (2.4) holds uniformly for |z| s1 . If f were not
only integer-valued, then =) would have a critical point for z = 0 and the
functions 4 5 (2) might not be analytic for =z = 0 , which would produce great

difficulties in estimating B;(s) log® zdz, since e(zx) has to be taken small.
e(=)

A result like Th. 2 seems to be completely new. From Delange's proof of
Lemma 2 it is seen that F(z) = [] (1 + } ga(pk) p'k) , where the function
P k=2

g,(n) = % w(@ D is the Mibius inverse of & UV | Taking in particular
din

f(n) = a(n) - w(n) , it is seen that this fumction satisfies the hypothesis of
Th. 2 and that

(5.1) Pa) = 1 - Up) L+ Vi-2)) = § & a* ,
p

where it is well-known (see [3] and [5]) that

(3.2) 4 = limz? ) 1,
ol nsz, (n)-wn)=k
which means that dk is the density of integers »n for which a(n) - w(n) = k .
Therefore in the case when f(n) = @(n) - w(n) one obtains (2.2) (noting that
d, = 1/2(2) = 6/7?) with
1

1
e, - J (F(a) - 6/72) 2 ds = J 1 dkzk"idz = ] a/k
A k=1 k=1

and all the other ei's are also computable.
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One could also generalize Th. 2 by supposing that f(p) = ... = f(pr'l) =0,
f(pr) =1 and 0 < f(pk) <Ck for k2r+1 ,where r22 is a fixéd natural

nunber. In that case we could find an estimate for | o) (using the methods
nsx

of Delange [4])} which would lead to the fornula (2.2) with =T instead of 27

Also it may be observed that Theorem 3 may be applied to g(n) = @(n) ,
Ff(n) = w(n) , thus improving the asymptotic formula for Z' 2(n)/w(n) proved
nsx
by De Koninck [2].

Finally we wish to thank Prof. H. Delange for his suggestions and criticism

of an earlier version of this paper.
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