SUMS OF RECIPROCALS OF CERTAIN ADDITIVE FUNCTIONS

Jean-Marie De Koninck and Aleksandar Ivić

We obtain sharp estimates for sums of reciprocals and sums of quotients of certain non-negative integer-valued additive arithmetical functions.

1. Introduction

In this paper we give sharp estimates for the sums $\sum_{n \leq x}^{\prime} 1 / f(n)$ and $\sum_{n \leq x}^{\prime} g(n) / f(n)$, where $f(n)$ and $g(n)$ belong to a certain class of nonnegative, integer-valued additive arithmetical functions, (here Σ ' denotes sumnation over those n for which $f(n) \neq 0$). In particular, we improve over the following asymptotic formulas proved in [1] and [2], respectively:

$$
\begin{equation*}
\sum_{n \leq x}^{\prime} 1 / \omega(n)=x \sum_{i=1}^{N} \frac{a_{i}}{(\log \log x)^{i}}+o\left(\frac{x}{(\log \log x)^{N+1}}\right) \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n \leq x}^{\prime} \Omega(n) / \dot{\omega}(n)=x+x \sum_{i=1}^{N} \frac{b_{i}}{(\log \log x)^{i}}+o\left(\frac{x}{(\log \log x)^{N+1}}\right), \tag{1.2}
\end{equation*}
$$

where $\omega(n)$ and $\Omega(n)$ denote the number of distinct prime divisors and the number of all prime divisors of n respectively, all the a_{i} 's and b_{i} 's are computable constants, and $N \geq 1$ is an arbitrary fixed integer.

$$
\text { One will observe that } \sum_{i=1}^{N} \frac{a_{i}}{(\log \log x)^{2}}=a_{1} L(x) \text {, }
$$

where for $x \geq x_{0}$ the function $L(x)$ is positive, continuous, and for every $c>0$ has the property

$$
\begin{equation*}
\lim _{x \rightarrow \infty} L(c x) / L(x)=1 . \tag{1.3}
\end{equation*}
$$

Such functions $L(x)$ are called slowly oscillating (or slowly varying; see [7] for a comprehensive account), and their canonical representation is

$$
\begin{equation*}
L(x)=p(x) \exp \left(\int_{x_{0}}^{x} \delta(t) t^{-1} d t\right) \tag{1.4}
\end{equation*}
$$

where $\rho(x)$ and $\delta(x)$ are continuous for $x \geq x_{0}, \lim _{x \rightarrow \infty} \rho(x)=A>0$ and
$\lim \delta(x)=0$. All slowly oscillating functions that appear in the sequel admit $x \rightarrow \infty$
an asymptotic expansion in terms of negative powers of $\log \log 2$, that is to say, for every fixed integer $M \geq 1$ there exist constants $A_{1}, A_{2}, \ldots, A_{M-1}$ such that

$$
L(x)=\frac{1}{\log \log x}+\frac{A_{1}}{(\log \log x)^{2}}+\ldots+\frac{{ }^{A} M-1}{(\log \log x)^{M}}+O\left(\frac{1}{(\log \log x)^{M+1}}\right)
$$

2. Theorems and proofs

Theorem 1. Let $f(n)$ be a non-negative, integer-valued additive arithmetical function such that for every prime $p, f(p)=1$ and $f\left(p^{k}\right)<c k$ for every $k \geq 2$ and some fixed $c>0$. Then for every fixed integer $N \geq 1$ there exist computable constants c_{1}, \ldots, c_{N} such that

$$
\begin{equation*}
\sum_{n \leq x}^{\prime} 1 / f(n)=c_{1} x L_{1}(x)+\ldots+\frac{c_{N} x L_{N}(x)}{\log ^{N-1} x}+o\left(\frac{x}{\log ^{N} x}\right) \tag{2.1}
\end{equation*}
$$

where every $L_{j}(x)(j=1, \ldots, N)$ is a slowly oscillating function asymptotic to $1 / \log \log x$.

Theorem 2. Let $f(n)$ be a non-negative, integer-valued additive arithmetical function such that for every prime $p, f(p)=0, f\left(p^{2}\right)=1$, and $0<f\left(p^{k}\right)<c k$ for every $k \geq 3$ and some fixed $c>0$. Then for every fixed
integer $N \geq 1$ there exist computable constants $e_{0}, e_{1}, \ldots, e_{N}$ such that

$$
\begin{equation*}
\sum_{n \leq x} 1 / f(n)=e_{0} x+\frac{e_{1} x^{1 / 2} L_{1}(x)}{\log x}+\ldots+\frac{e_{N} x^{1 / 2} L_{N}(x)}{\log ^{N} x}+0\left(\frac{x^{1 / 2}}{\log ^{N+1} x}\right) \tag{2.2}
\end{equation*}
$$

where every $L_{j}(x)(j=1, \ldots, N)$ is a slowly oscillating function asymptotic to $1 / \log \log x$.

Theorem 3. Let f and g be two non-negative, integer-valued additive arithmetical functions such that for all primes p and integers $k \geq 2, f(p)=g(p)=1$ $f\left(p^{k}\right)<C k, g\left(p^{k}\right)<C k$, where C is a positive constant. Then for every fixed integer $N \geq 1$ there exist computable constants $a_{j}, b_{j}(j=1, \ldots, N)$ such that (1) $\sum_{n \leq x} \frac{g(n)}{f(n)}=x\left(a_{1}+b_{1} L_{1}(x)+\frac{a_{2}+b_{2} L_{2}(x)}{\log x}+\ldots+\frac{a_{N}+b_{N} L_{N}(x)}{\log ^{N-1} x}\right)+0\left(\frac{x}{\log _{x}^{N}}\right)$,
where every $L_{j}(x)(j=1, \ldots, N)$ is a slowly oscillating function asymptotic to $1 / \log \log x$.

Proofs. We shall use two deep results of H. Delange (proved in [3] and [4] respectively), which we state here as

Lemma 1. Let $f(n)$ be a non-negative, integer-valued additive arithmetical function such that $f(p)=1$ for every prime p. Let $\sigma_{0}(p)$ denote for every $\rho \geq 0$ the infimm of real numbers $\sigma>1 / 2$ for which

$$
\begin{equation*}
\sum_{p, k \geq 2} \rho^{f\left(p^{k}\right)} p^{-k \sigma}<+\infty \tag{2.3}
\end{equation*}
$$

if this set is non-empty (and $\sigma_{0}(\rho)=+\infty$ otherwise), and let E be the set of all $\rho \geq 0$ for which $\sigma_{0}(\rho)<1$ and R the supremum of the set E (finite or $+\infty)$. Then for every fixed integer $N \geq 0$ there exist functions $A_{0}, A_{1}, \ldots, A_{D}$ analytic for $|z|<R$ and continuous for $|z| \leq R$ such that
$A_{0}(0)=A_{1}(0)=\ldots=A_{N}(0)=0$ and

$$
\begin{equation*}
\sum_{n \leq x} z^{f(n)}=x(\log x)^{z-1}\left(\left.\sum_{j=0}^{N} \frac{A_{j}(z)}{(\log x)^{j}}+O\left(\frac{1}{\log ^{N+1} x}\right) \right\rvert\,,\right. \tag{2.4}
\end{equation*}
$$

where for every $\rho>0$ from E the 0 -constant is uniform for $|z| \leq \rho$.
Lemma 2. Let $f(n)$ be a non-negative, integer-valued additive arithmetical function such that for every prime $p, f(p)=0$ and $f\left(p^{2}\right)=1$. For every $\rho \geq 0$ define a multiplicative function h_{p} by

$$
h_{\rho}\left(p^{k}\right)= \begin{cases}\rho^{f\left(p^{k}\right)}+\rho^{f\left(p^{k-1}\right)} & f\left(p^{k}\right)=f\left(p^{k-1}\right) \tag{2.5}\\ 0 & \cdot \\ f\left(p^{k}\right)=f\left(p^{k-1}\right)\end{cases}
$$

and for every $\rho \geq 0$ let $\sigma_{0}(\rho)$ be the infimum of real numbers $\sigma>1 / 3$ for which

$$
\begin{equation*}
\sum_{p, k \geq 3} h_{\rho}\left(p^{k}\right) p^{-k \sigma}<+\infty \tag{2.6}
\end{equation*}
$$

if this set is non-empty (and $\sigma_{0}(\rho)=+\infty$ otherwise). Let further I be the set of $\rho \geq 0$ for which $\sigma_{0}(\rho)<1 / 2$, and R the supremum of I (finite or $+\infty$). Then for every fixed integer $N \geq 0$ there exist functions $F, A_{0}, A_{1}, \ldots, A_{N}$ analytic for $|z|<E$ and continuous for $|z| \leq R$ such that $F(0)=6 / \pi^{2}, A_{0}(0)=\ldots=A_{N}(0)=0$ and

$$
\begin{equation*}
\sum_{n \leq x} z^{f(n)}=x F(z)+x^{1 / 2}(\log x)^{z-2}\left(\sum_{j=0}^{N} \frac{A_{j}(z)}{(\log x)^{j}}+0\left(\frac{1}{\log ^{N+1} x}\right)\right), \tag{2.7}
\end{equation*}
$$

where for every $\rho>0$ from I the 0 -constant is uniform for $|z| \leq \rho$.
We begin now the proof of Th. 1 by observing that if f satisfies the hypothesis of Th. 1, then Lemma 1 may be applied with some $R>1$, and so (2.1) holds uniformly in z for $|x| \leqslant 1$. To see this note that if $\rho \geq 1$

$$
\sum_{p ; k \geq 2} \rho^{f\left(p^{k}\right)} p^{-k \sigma} \leq \sum_{p, k \geq 2}\left(\rho^{C} p^{-\sigma k}=\sum_{p}\left(\rho^{C} p^{-\sigma}\right)^{2} /\left(1-\rho^{C} p^{-\sigma}\right)<+\infty\right.
$$

for every $\sigma>1 / 2$, provided that $\rho^{C} p^{-\sigma}<1-B$ for some fixed $0<B<1$. if $\sigma \geq 2 / 3$ then

$$
\rho^{C} p^{-\sigma} \leq \rho^{C} 2^{-2 / 3}<5 / 6
$$

for $\rho<\left(\frac{5}{6} 2^{2 / 3}\right)^{1 / C}$. Since C is fixed this last number is greater than unity, and thus Lemma 1 applies with some $R>1$.

Now $f(n)=0$ for $n \leq x$ if $n=1$ or possibly if n is one of the $O\left(x^{1 / 2}\right.$) "square-full" numbers not exceeding x (numbers of the form $n=p_{1}^{a_{1}} \ldots p_{i}^{a_{i}}$ where $\left.a_{1} \geq 2, \ldots, a_{i} \geq 2\right)$. If $f(n) \neq 0$, then $f(n) \geq 1$ since f is integer-valued and non-negative. Dividing (2.4) by a and setting $B_{j}(z)=A_{j}(z) / z$ we see that for $|z| \leq 1$ we have uniformly

$$
\begin{equation*}
\sum_{n \leq x} z^{f(n)-1}=x(\log x)^{z-1}\left(\sum_{j=0}^{N} \frac{B_{j}(z)}{(\log x)^{j}}+0\left(\frac{1}{3(\log x)^{N+1}}\right)\right) \tag{2.8}
\end{equation*}
$$

We take now z real and integrate (2.8) from $\varepsilon(x)=x^{-2 / 3}$ to 1 over
z. The left-hand side of (2.8) becomes after integration

$$
\begin{equation*}
\sum_{n \leq x}^{1} 1 / f(n)-\sum_{n \leq x}^{\prime}(E(x))^{f(n)} / f(n)=\sum_{n \leq x}^{1} 1 / f(n)+O\left(x^{1 / 3}\right) \tag{2.9}
\end{equation*}
$$

since $(\varepsilon(x))^{f(n)} \ll \varepsilon(n)$ if $f(n) \neq 0$.

Integrating the right-hand side of (2.8) it is seen that the integral of the error term is

$$
\begin{equation*}
\int_{\varepsilon(x)}^{1} x \log ^{z-N-2} x \cdot \frac{d z}{2} \ll x \log ^{-N} x \tag{2.10}
\end{equation*}
$$

When integrating the main terms on the right-hand side of (2.8) we encounter integrals of the form
(2.11) $x(\log x)^{-1-j} \int_{\varepsilon(x)}^{1} B_{j}(z) \log ^{z} x \cdot d z=x(\log x)^{-1-j} \int_{0}^{1} B_{j}(z) \log ^{z} x \cdot d z+O\left(x^{1 / 3}\right)$,
since $B_{j}(z)=A_{j}(z) / z$ is an analytic function for $|z| \leq 1$ (because $R>1$ and $A_{j}(0)=0$, so that for $x \geq x_{0}$

$$
\begin{aligned}
& \int_{0}^{\varepsilon(x)} B_{j}(z) \log ^{z} x \cdot d z \ll(\log x)^{\varepsilon(x)} \int_{0}^{\varepsilon(x)}\left|B_{j}(z)\right| d z \\
& \ll \exp \left(x^{-2 / 3} \log \log x\right) \cdot \varepsilon(x) \max _{z \in[0,1]}\left|B_{j}(z)\right| \ll \varepsilon(x)=x^{-2 / 3} .
\end{aligned}
$$

Integration by parts gives for every fixed integer $M \geq 1$

$$
\begin{aligned}
& H_{j}(x)= \int_{0}^{1} B_{j}(z) \log ^{z} x \cdot d z= \\
&(2.12)+0\left(\left.\int_{j}^{1} \frac{B_{j}(z) \log _{j}^{z} x}{\log \log x}\right|_{0} ^{1}+\ldots+\left.(-1)^{M-1} \frac{B_{j}^{(M)}(z) \log ^{z} x}{(\log \log x)^{M-1}}\right|_{0} ^{1} \log ^{z} x\right. \\
&(\log \log x)^{M+1} \\
&(z)=\frac{B_{j}(1) \log x}{\log \log x}+\ldots+(-1)^{M-1} \frac{B_{j}^{(M)}(1) \log x}{(\log \log x)^{M}} \\
&+0\left(\frac{\log x}{(\log \log x)^{M+1}}\right)
\end{aligned}
$$

which means that $L_{j}(x)=H_{j}(x) /\left(B_{j}(1) \log x\right)$ is a slowly oscillating function asymptotic to $1 / \log \log x$ which admits an expansion in terms of negative powers of $\log \log x$. From (2.9) - (2.12) Th. 1 follows with $c_{i}=B_{i-1}$ (1). Since the functions $A_{j}(8)$ may be explicitly written, as was done in [3], this means that all the constants a_{i} are computable.

To prove Th. 2 we use Lemma 2 and exactly the same method of proof again,
noting that similarly as before the hypothesis that $f\left(p^{k}\right)<C k$ assures that $R>1$ in Lemma 2, so that (2.7) holds uniformly for $|z| \leq 1$ if f satisfies the hypothesis of Th. 2: Observe next that $f(n)=0$ if and only if n is square-free, so that (see [8] for a proof)

$$
\begin{equation*}
\sum_{n \leq x, f(n)=0} z^{f(n)}=\sum_{n \leq x} \mu^{2}(n)=\frac{6}{\pi^{2}} x+O\left(x^{1 / 2} \exp (-c \delta(x))\right), \tag{2.13}
\end{equation*}
$$

where c is a positive constant and $\delta(x)=\log ^{3 / 5} x \cdot(\log \log x)^{-1 / 5}$. Therefore dividing (2.7) by z we obtain uniformly for $|z| \leq 1$

$$
\begin{gather*}
\sum_{n \leq x},{ }_{z} f(n)-1=x\left(F(z)-6 / \pi^{2}\right) z^{-1}+x^{1 / 2} \log ^{-2} x \cdot \sum_{j=0}^{N} B_{j}(z) \log ^{z-j} x+ \tag{2.14}\\
O\left(x^{1 / 2}|z|^{-1} \log ^{\operatorname{Re} z-N-3} x\right)+O\left(x^{1 / 2} \mid z \Gamma^{1} \exp (-c \delta(x))\right)
\end{gather*}
$$

where we have set again $B_{j}(z)=A_{j}(z) / z$ (though of course $A_{j}(z)$ of Lemma 1 may be a different function from $A_{j}(z)$ of Lemma 2).

Now we integrate (2.14) over z fram $\varepsilon(x)=x^{-2 / 3}$ to 1 , exactly as was done in the proof of Th. 1. The left-hand side becones then again

$$
\begin{equation*}
\sum_{n \leq x}^{1} 1 / f(n)+O\left(x^{1 / 3}\right) \tag{2.15}
\end{equation*}
$$

and likewise

$$
\begin{gather*}
\int_{\varepsilon(x)}^{1} B_{j}(x) \log ^{z} x \cdot d z=\int_{0}^{1} B_{j}(z) \log ^{z} x \cdot d z+O(\varepsilon(x)) \tag{2.16}\\
\int_{0}^{1} B_{j}(z) \log ^{2} x \cdot d z=B_{j}(1) \log x \cdot L_{j}(x) \tag{2.17}
\end{gather*}
$$

where $L_{j}(x)$ is a slowly oscillating function asymptotic to $1 / \log \log x$. Integrating the error terms on the right-hand side of (2.14) we obtain

$$
\begin{equation*}
O\left(x^{1 / 2} \log ^{-N-1} x\right)+O\left(x^{1 / 2} \log x \cdot \exp (-c \delta(x))\right)=O\left(x^{1 / 2} \log ^{-N-1} x\right) \tag{2.18}
\end{equation*}
$$ and finally

(2.19) $\int_{\varepsilon(x)}^{1} z\left(F(z)-6 / \pi^{2}\right) z^{-1} d z=x \int_{0}^{1}\left(F(z)-6 / \pi^{2}\right) z^{-1} d z-x \int_{0}^{\varepsilon(x)}\left(F(z)-6 / \pi^{2}\right) z^{-1} d z$

$$
=x \int_{0}^{1}\left(F(z)-6 / \pi^{2}\right) z^{-1} d z+O(x \varepsilon(x))=e_{0} x+O\left(x^{1 / 3}\right),
$$

since $\left(F(z)-6 / \pi^{2}\right) z^{-1}$ is continuous in $[0,1]$ because $F(0)=6 / \pi^{2}$. Combining (2.15) - (2.19) we obtain Th. 2 with

$$
e_{0}=\int_{0}^{1}\left(F(z)-6 / \pi^{2}\right) z^{-1} d z, e_{j}=B_{j-1}(1)
$$

for $j \geq 1$.

In order to prove Theorem 3, we proceed as follows. Define for every pair $\left(\rho_{1}, \rho_{2}\right)$ of non-negative real numbers $\sigma_{0}\left(\rho_{1}, \rho_{2}\right)$ as the infimm of real numbers $\sigma>1 / 2$ for which

$$
\begin{equation*}
s=\sum_{p, k \geq 2} \rho_{1}^{g\left(p^{k}\right)} \rho_{2}^{f\left(p^{k}\right)} p^{-k \sigma}<+\infty \tag{2.20}
\end{equation*}
$$

if this set is non-empty, and $\sigma_{0}\left(\rho_{1}, \rho_{2}\right)=+\infty$ otherwise. Let E be the set of non-negative pairs of real numbers $\left(\rho_{1}, \rho_{2}\right)$ for which $\sigma_{0}\left(\rho_{1}, \rho_{2}\right)<1$.

Suppose now $\rho_{1} \geq 1$ and $\rho_{2} \geq 1$. Then the hypothesis of the theorem imply

$$
s \leqslant \sum_{p, k \geq 2} \rho_{1}^{C k} \rho_{2}^{C k} p^{-k \sigma}=\sum_{p} \rho_{1}^{2 C} \rho_{2}^{2 C} p^{-2 \sigma} /\left(1-\rho_{1}^{C} \rho_{2}^{C} p^{-\sigma}\right)<+\infty
$$

for every $\sigma>1 / 2$ if $\rho_{1}^{C} \rho_{2}^{C} p^{-\sigma} \leq 1-B$ for some fixed $0<B<1$. If $\sigma \geq 2 / 3$,
$\rho_{1}<\left(\frac{9}{10} 2^{1 / 3}\right)^{1 / C}, \rho_{2}<\left(\frac{9}{10} 2^{1 / 3}\right)^{1 / C}$, then we obtain

$$
\rho_{1}^{C} Q_{2}^{C}<\frac{81}{100} 2^{2 / 3} \leqslant \frac{81}{100} p^{\sigma}
$$

Since $\frac{9}{10} 2^{1 / 3}>1$, this means that $(\rho, \rho) \in E$ for some fixed $\rho>1$. By the lemma of Delange [2], p. 108, this implies that

$$
G(s, z, u)=\prod_{p}\left(1+\sum_{k=1}^{\infty} z^{g\left(p^{k}\right)} u^{f\left(p^{k}\right)} p^{-k s}\right)\left(1-p^{-s}\right)^{z u}
$$

is a well-defined function for $|z| \leq \rho,|u| \leq \rho, \sigma=\operatorname{Re} s>\sigma_{0}(\rho, \rho)$, analytic in 8 . Proceeding further similarly as was done by Delange in [3], we obtain that for every fixed integer $N \geq 0$

$$
\begin{equation*}
\sum_{n \leq x} z^{g(n)} u^{f(n)}=x(\log x)^{z u-1} \sum_{j=0}^{N} A_{j}(z, u) \log ^{-j} x+R(x, z, u), \tag{2.21}
\end{equation*}
$$

where $A_{j}(z, u)(j=1, \ldots, N)$ is an analytic function of z and u for $|z|<p$, $|u|<\rho$, continuous for $|x| \leq \rho,|u| \leq \rho$, such that $A_{j}(z, 0)=0$ and

$$
\begin{equation*}
R(x, z, u)=O\left(x(\log x)^{\operatorname{Re} x u-N-2}\right) \tag{2.22}
\end{equation*}
$$

where the O-constant is uniform in z and u.

We differentiate (2.21) with respect to z, use (2.22) and Cauchy's inequality for the derivative of an analytic function to estimate the error tem, and then set $z=1$, which is possible since $\rho>1$. This gives uniformly for $|u| \leq \rho$
$(2.23) \sum_{n \leq x} g(n) u^{f(n)-1}=x \sum_{j=0}^{N} \log ^{u-1-j} x\left(C_{j}(u)+B_{j}(u) \log \log x\right)+O\left(|u|^{-1} x \log ^{\operatorname{Re} u-N-2} x\right)$ where $C_{j}(u)=\left.\frac{1}{u} \frac{\partial A_{j}(z, u)}{\partial z}\right|_{z=1}, B_{j}(u)=A_{j}(1, u)$

Note again that $f(n)=0$ if $n=1$ and possibly if n is square-full,
so that,

$$
\sum_{n \leq x, f(n)=0} g(n) \ll \sum_{n \leq x, f(n)=0} \Omega(n) \ll \log x \sum_{n \leq x, n} \sum_{\text {squarefuzl }} 1 \ll x^{1 / 2} \log x \text {, }
$$

which implies by (2.23)

$$
\begin{aligned}
\text { (2 24) } \sum_{n \leq x}^{\prime} g(n) u^{f(n)-1} & =x \sum_{j=0}^{N} \log ^{u-1-j} x\left(C_{j}(u)+B_{j}(u) \log \log x\right) \\
& +O\left(x|u|^{-1} \log ^{\operatorname{Re} u-N-2} x\right)+O\left(|u|^{-1} x^{1 / 2} \log x\right) .
\end{aligned}
$$

We proceed now as in the proof of Th. 1,.integrating (2.24) over u real from $\varepsilon(x)=x^{-2 / 3}$ to 1 , and the proof is very much the same. We note here only that the integral of the left-hand side of (2.24) is

$$
\sum_{n \leq x} \frac{g(n)}{f(n)}-\sum_{n \leq x} \frac{g(n)}{f(n)}(\varepsilon(x))^{f(n)}=\sum_{n \leq x} \frac{g(n)}{f(n)}+O\left(x^{1 / 3} \log \log x\right),
$$

since $g(n) \ll \Omega(n), f(n) \geq 1$ if $f(n) \neq 0$ and $\sum_{n \leq x} \Omega(n) \ll x \log \log x$. The integrals of the main terms on the right-hand side of (2.24) are handled exactly the same way as was done in the proof of Th. 1, the integral of the error term is $O\left(x \log ^{-N} x\right)$, so that after collecting all the terms we obtain the conclusion of the theorem.

3. Applications and some remarks

Theorem 1 can be obviously applied to additive functions $\omega(n)$ and $\Omega(n)$ (and in both cases $\sum_{n \leq x}^{1}=\sum_{2 \leq n \leq x}$), since $\omega\left(p^{k}\right)=1$ and $\Omega\left(p^{k}\right)=k$ for all primes p and integers $k \geq 1$. Therefore (1.1) and (1.2) may. be replaced with the sharper asymptotic formula furnished by Th. 1.

The proof of Th. 1 uses essentially the same method presented by De

Koninck in [1], only now instead of a result of A. Selberg [6] Delange's Lemma 1 is used. This lemma is much sharper, but also more restrictive than Selberg's result, so that we had to make a hypothesis (and our condition that $f\left(p^{k}\right)<C k$ for $k \cdot \geq 2$ is easy to verify) which would ensure that R of Lemma 1 is strictiy greater than unity, so that (2.4) holds miformly for $|z| \leq 1$. If f were not only integer-valued, then $z^{f(n)}$ would have a critical point for $z=0$ and the functions $A_{j}(a)$ might not be analytic for $z=0$, which would produce great difficulties in estimating $\int_{\varepsilon(x)} B_{j}(z) \log ^{z} x d z$, since $\varepsilon(x)$ has to be taken small.

A result like Th. 2 seems to be completely new. Fron Delange's proof of Lenma 2 it is seen that $F(z)=\prod_{p}\left(1+\sum_{k=2}^{\infty} g_{z}\left(p^{k}\right) p^{-k}\right)$, where the function $g_{z}(n)=\sum_{d \mid n} \mu(d) z^{f(n / d)}$ is the Möbius inverse of $z^{f(n)}$. Taking in particular $f(n)=\Omega(n)-\omega(n)$, it is seen that this function satisfies the hypothesis of Th. 2 and that

$$
\begin{equation*}
F(z)=\prod_{p}(1-1 / p)(1+1 /(p-2))=\sum_{k=0}^{\infty} d_{k} z^{k}, \tag{3.1}
\end{equation*}
$$

where it is well-known (see [3] and [5]) that

$$
\begin{equation*}
d_{k}=\lim _{x \rightarrow \infty} x^{-1} \sum_{n \leq x, n(n)-\omega(n)=k} 1, \tag{3.2}
\end{equation*}
$$

which means that d_{k} is the density of integers n for which $\Omega(n)-\omega(n)=k$. Therefore in the case when $f(n)=\Omega(n)-\omega(n)$ one obtains (2.2) (noting that $\left.d_{0}=1 / \zeta(2)=6 / \pi^{2}\right)$ with

$$
e_{0}=\int_{0}^{1}\left(F(z)-6 / \pi^{2}\right) z^{-1} d z=\int_{0}^{1} \sum_{k=1}^{\infty} d_{k} z^{k-1} d z=\sum_{k=1}^{\infty} d_{k} / k,
$$

and $a 11$ the other $e_{i}{ }^{\prime} s$ are also computable.

One could also generalize Th. 2 by supposing that $f(p)=\ldots=f\left(p^{p-1}\right)=0$, $f\left(p^{r}\right)=1$ and $0<f\left(p^{k}\right)<C k$ for $k \geq r+1$, where $r \geq 2$ is a fixed natural number. In that case we could find an estimate for $\sum_{n \leq x} z^{f(n)}$ (using the methods of Delange [4]) which would lead to the formula (2.2) with $x^{1 / r}$ instead of $x^{1 / 2}$.

Also it may be observed that Theorem 3 may be applied to $g(n)=\Omega(n)$, $f(n)=\omega(n)$, thus improving the asymptotic formula for $\sum_{n \leq x} \Omega(n) / \omega(n)$ proved by De Koninck [2].

Finally we wish to thank Prof. H. Delange for his suggestions and criticism of an earlier version of this paper.

REFERENCES

[1] De Koninck, J.M., On a class of arithmetical functions, Duke Math. Journal, (39) 1972, 807-818
[2] De Koninck, J.M., Sums of quotients of additive functions, Proc. Amer. Math. Soc. (44) 1974, 35-38
[3] Delange, H., Sur des formales de Atle Selberg, Acta Arith., (19) 1971, 105-146
[4] Delange, H., Sur un theoreme de Rényi III, Acta Arith., (23), 1973, 153-182
[5] Renyi, A., On the density of certain sequence of integers, Publ. de l'Inst. Math. (Belgrade), (8), 1955, 157-162.
[6] Selberg, A., Note on a paper by L.G. Sathe, J. Indian Math. Soc., (18) 1954, 83-87
[7] Seneta, E., Regularly varying functions, LNM 508, Springer-Verlag, 1976
[8] Walfisz, A., Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Berlin, 1963

Jean-Marie De Koninck Département de Mathêmatiques Universite Laval Québec, P.Q. Canada, G1K 7P4
Aleksandar Ivićs *
Rudarsko-geoloski Fakultet
Univerziteta u Beogradu
Djusina 7
11000 Beograd, Yugoslavia

* Research financed by the Mathematical Institute of Belgrade and Republička Zaj. of Serbia

