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0. TIntroduction. The problems discussed here have their roots in
two seemingly remote questlons The first problem is to estimate

> 29(") where zis a real or complex variable and where Q (n) denotes
n<x -
the totaI number of prime factors of n. The most successful, perhaps, of

treatments of this problem before 1960 was by Selberg [10]. Other
writers included Bateman [1], Grosswald [6], and Sathe.

The other problem was to estimate ¥ (x, ), the number of integers
< x all of whose prime factors are <y. In a series of papers during
the 50’s [2, 4, 3] N. G. de Bruijn gave an estimate of ¥ (x, y) which was

uniform in x and y and useful so long as %—(‘%; was not “too large.” -

Here we propose to estimate 3 z?®, the sum to be taken over
fmin< x, c<p<Lyifp|n p prime}. (Hereafter the words “the sum
(orproduct) to be taken over” will be omitted; the set of summation
will follow the expression. Also p will denote a prime.) This sum is
equal to 2 22 {n:n <-x}if ¢ <2 ‘and p > x, and to ¥(x,p)ifc <2,
z=1  Let ¥(x, 5 2 ¢)=2z% {n:n < x, c<pyifp|ln}). Our
goal is to give an approximation to ¥ which includes both the above
mentioned problems as special cases, is uniform in x, ¥, and z, such
that the approximation is differentiable with respect to y and to z, and
such that the n-th derivative 8z of the approximating function estimates

(% ‘I") With some qualifications, this can be done. In §1 we apply
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results of [5] and [10] to the case y = x, in which there is no restriction
on the prime factors of n. In §2 our methods follow those of [4].

§1.. The One Parameter Problem Here our goal is to estlmate
¥ (%, X, 2, ¢) =3 z00m mn<x c<p if Pl Selberg [10] showed
explicitly that if ¢ < 2, |z | < 2 then as x> co,

T 20 = xH (2) (log ™ + 0 (x(log x)ReM)
n< X .

- = el .I.‘(l,“f)_l.(‘f‘:?l?)z? . :

the produCt to be taken over all primes .

If | zl > .in general the sum does not increase smoothly thh X, but
makes -big jumps when X is a power of some pnme pe< P < lzf We
do not attempt to give estimates in thlS case. For ¢>|z], ¢>2 one
has; - following Selberg, W (x, X, z, ¢) =2 29 {n: n< x o< pifp|ny=
%G (2) (log x)"1 + 0 (x ]og x)Rf’-z) R SRR

mglgn (- nl-d (g

{p:p<c‘} {p:p> é}-

where

'D'elange' [5] extends these formulas as-follows. . For any positive ¢,
any z with |z| < ¢, and any 1nteger g>1,as x— oo there exist 4 i@
not ,‘dependmg .on ¢, yhelomorphlc in | z[ < ¢ such that

¥z c)-—x(logx)z—‘ [H (x, 2)+ 0 ( (logi)q"‘l)]”'.. m
where_ L

H (x, z)= 3" A; (Z) (log‘aé)-i -

j=0

Il “*.' N

SIf p’ is the least prime >¢, and ¢>0, the A](z) converge for
}z| <p —g and the above “0” is umform for [z{ < p —~g | ;

Now let e
e il sl (x P2, C)’~= ‘I’(X ¥z, c)
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Returmng to’ ‘P‘(x x, z, c) we wrlte (1) as:
‘P‘ (x, x, z, c) = X (log Xy y . Aj (z) (log x)"f +B(@)x (]og x)"q‘2 : (3)
. §=0 v ‘
with'B(z) =0 (1) uniformly for | z| < p —e. Let us say lB(z) I < C1
for all x sufficiently large-and for all" z, |z| < p’—e.' Now assume
that x is large enough and write g (x, 2) = B(2)(log x)* so that

2 2(x2) = B () (log )" + B(2) (log x)* log log .

Now for each z such that =
|zl <p' =€ let r(2)=p ' —e~|z[>0/
By Caﬁchy’s inequality, we have for |z|<p' —¢ - -
| B' (2)| < Cyfr (2). ,
Thus for | z] < p’~~ 2¢ one has uniformly | B’ (z)| < Cy/e, and in this disc
djoz g (x, 2) = O¢ (log? x log log x). Therefore dlﬁ‘erentlatmg (3) with
respect to z and using (2), we obtain

A (x, x,z, ¢) = x log=! x loglog x- Z A;(2) ldg-_fx +

+ X log~ x }_ Aj (2) log“f x4+ 0 (xlogz“l-2 xloglogx)

j=0

= xlogz;lx S [4;(2) loglog x — Aj(z)] log~/ x +
J=0

+0 (x Iog’“‘l-2 x log log x) (4)

Further differentiation is now’ pOssxble since both| B(z) | and‘l B'(2)]
are bounded in|z| < p’ — 2:. At each differentiation the disc shrinks
in radius by ¢, and the bound increases by a factor of 1 /e

In this way we have eventually the following: For ﬁxed integer n,
q> 1, p’ prime number, and real ¢ < p’, let ¢ >0 satisfy ns < § (c — p').
Let ‘

fx,z) =xlogr=rx 3, Aj(z)log~x, . .~ ()

.=0 N -
Then !
" A,, e x, z, c) = f (x5 2) + 0s (x log"‘l"’ x(log log x)"), (6

wuh the “0” umform inzfor|z|<e
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REMARK. Normally one cannot differentiate “O”, but in this case the
“0” is with respect to x, while the differentiation is with respect to z.
Fun‘.her the functions involved are holomorphic in z. 'Although we shall
not pursue this in such detail asthe derivatives, one can also integrate

29n)
f (x,2)dz and the result will approx1mate 3 o ) {n:n<x and: p > cif
p|n}.
In fact, iét ué té.ke c>1 fixed, 0 <Lz < c féal, g > 1 an integer, and
e>0. Let F(x,2)=Y¥(x, x, 2 ¢) and let f(x, z) beasin (5). Now
E(x,z2)=f (x z) + O (x log=1~ x) (M

uniformly in 0 <z < ¢ —e. Thus "

I F(x, 1) dt = j Fou ) dt+ 0 (% logé-1-% ) (Iog log 3
.. ¢ . o .

uniformly in0 <z c—e. In other words,,

B O]
L1+Q(){ xc<p1fp[n}

— [7Gu 1) de+ 0 (x tog o2 ) (log log )~
0 .
uniformly for 0<zc—=

Though it is more dlfﬁcult if 1<z& R one can 1ntegrate F (x, 1)
thh respect to ¢ from z — 1 to z and obtam an estnmate for :
" zQ(n)
> am n2<n<x, c<pifpin}
The result.is that . . ;
290 B1 (2) x log®1 x
Q (n) log logx

where B1(z)=z7' 4,(2). We shall not need th1s result in what follows,
and the proof is omitted. '

Although it is of some intrinsic interest to work out the apphcatlons
of known general results to ¥ (x, x, z, ¢) and its derlvatxves and 1ntegra]
we have another purpose for these estimates.
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REMARK. Normally one cannot differentiate-“0”, but in this case the
“0” is with respect to x, while the differentiation is with respect to z.
Further, the functions involved are holomorphic in z. 'Although we shall
r:;ot’,vpursue this in such defcail asthe derivatives, one can also integrate

’ ) . . ()
f(x, z) dz and the result will approximate }’ g—;%s {n:n<x and p>cif
p|nt. ‘ ' ’ : '

In fact, let us take ¢>1 fixed, 0 <Lz < ¢ real, g>1 aninteger, and
e>0. Let F(x,2)= ¥ (x, x, 2 ¢) and let f(x, z) beas in (5). Now
F(x, 2) = f(x, 2) + O (x log?~47% X), (7N
uniformly in 0 <z < ¢ —e. Thus " ’ Lo v

I Fx, 1) de = [ £(x,0) dt + O (xlogr=4-% x) (log log %)™
0 R . 3

uniformly in 0 < z

N\ ot=——n

¢ —e. In other words,

_. e N
2. l—_r-Q—(—n—){n:ngx, c<pifp|n}.

== If(x, 1) di + O (x log #-4-2 x) (log log x)-1
p :
uniformly for 0<z<{¢c —=.

Though it is more difficult, if 1<z & R one can integrate F(x,)
with respect to f from z — 1 to z and obtain an estimate for o
o 0] ‘ »
> am n2<nx, e<pifpln}.

The result.is that = o _

2% B (2)x log?-! x

Q(n) loglogx °’
where By (z) =z Ao (2). We shall not need this result in what follows,
and the proof is omitted. ' '

Although it is of some intrinsic interest to. work out the applicﬁtidﬁs
of known general results to ¥ (x, x, z, ¢) and its derivatives and integral,
we have another purpose for these estimates. : h

" SUMS OVER  INTEGERS S 357

With y < x, ¥ (%, , 2, ¢) reflects the multiplicative structure of the

" integers < x through two effects: First,” Q(m) depends on the prime
: fact_orization of n, and second, the sum is taken only over numbers with

small prime factors (p <y if p|n). ~We shall develop Y (%, ¥, 2, ©)
estimates by a recursion in which y shrinks away from x. Thus, as in
any induction, a knowledge of the initial conditions (y = X) for the
recursion is necessary. This precondition has been filled in the preceding
pages, and we move to the two parameter problem, in which both x and
y vary.

§2, The Two Parameter Problem. We now turn to -estimating
¥ (x,y, 7, ¢) in the case where y<X. Since log x/log y appears
frequently, let u = log x/log y.

There now appear several definitions and elementary propositions
which we shall need in what follows. A few have been repeated for

~ easier reading.

DEFINITION:
‘F(x,yaz,'c)=zzﬁ(") - R S o
(min<x,c<p L yifpln} forx,y>1, |z].<-c. (8)
DEFINITION: | , s “ ,
Ar(%, 9, 2, €)= Z 28T I (Q(n) —m), )

~where the product runs through {m: 0<m < r} and the sum is taken
over {n:n<x and ¢c<p<Yy if p|n} for r > 0 integer, x=hLy>1,
lz| < c. ' N - :

Let Ay (%, y, 2, ¢) be identically 0. (This will simplify the statement
of some of our proofs and results.) Thus o . '
Ay, ys 2, 0) =Y (X% ¥, 2 ¢) and
Ar(x, 9, 2,0) = @r/ez") (¥ (x, », 2 ). (10)
DEFINITION ;| "

F(x, ) =A% %, 2,0 S
If r =0 we omit 7. Co
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- DEFINITION.
zb(x, y, Z,:¢) = ‘Y(x ¥,2Z, €) fory > x> 1 and

q;(x Vs z, c)= (z/log y)q:(x/y, y, z c) for l <y< : (12)

DEFINITION
7\,(x ¥ z, c)— A,(x y, Z, c) fory>x> 1, and

5}77» (x, y; z;, ¢)=(z/log ) A+ (x[¥, ¥, 2, ¢) +

+ (rflog 3) dees (%13, 3, 7, ©) for 1 <y < %, r 20, (13)

DEFINITION
fz(u)—Oforu<O lforo<u<, and

_ufz(u)=zfz(u—l)foru>1. - :‘(14)‘

'( DEFINITION :
for@)=0foru<0,1for0<u<1, and

—uf,, (W) =2fey (4 — 1)+rfz,r_1(u—1) foru>1. (15)

DEFINITION. .
p:() =0foru<0, G for0<u<l, and - -
v W=z — 1o (u—1Dforu>1, (16)
where G(2)=(T @) N1 —p?y U1 —p7y¥ QA —zp)H{p: p<c}
{p:p>c}. -

_ -DEFINITION.  R(y) denotes an arbitrary but fixed function of y such that
R() 0, R(y) > (logy)fy for y>2, and |=(») — Li(»)] < yR(3)/log y
(y 2 2). One could e.g. take R(y) = C exp (— CcViogy). . (1D

» REMARK. Wﬂev‘follow the common practice of letting each instance
of “C” stand for a possibly different constant.

The following propositions set the stage for the main result. We shall
now fix ¢, and without loss of generality take ¢ to be of the form p’ —=
fixed. Consequently we omit ¢ as a variable in ¥, A, ¢, A etc.

PROPOSITION 1. ¥ (x, ¥, 2) — ¥ (X, ¥, 2) =23 ¥ (x/ 2) {p: y
s V% Xy Vs 2) == p,p, D) {piy <
< ¥y} for h> 1 real. o ' ' rr<r
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;PRQOI{; Immedw.te from the deﬁmuon of Y.

PROPOSITION 2. A, (X, ¥, z) A (X, 9, 2) E(zA, (x/p, D, z)—l—rA,_l
(x/p, P, 2N {py <p < y"} fm h>1 1eal r> 0 mteget

Proor. Also from the deﬁmtxon
i

PROPOSITION 3. ¢ (x, )%, Z) ¢(x ¥, Z) j ¢(x/‘t.,‘t’,:z){dt/luog' ¢ for

. y -
h=1. .
PROPOSITION 4 A (X, Y05 2) = Mo (X, 3, 2) =
yh .
j(z?\, (x/t t, z) + r7\,_1 (x/t, t, 2)) a’t/loDr tfar h > 1

_ Proofs of 3 and 4, From the deﬁnition. v

PROPOSITION 5 q;(x ¥, z) = X].fz (l%@_t) (If—(fi-i))

(Here ¢ is the variable of integration.)

_“PROPOSITION 6. xlog:‘1 Xpz (1) =

f log x — log ¢ d _G__(_z_)_tﬂlog"” AT
z log y. \. Y

‘where again t is the varzable of integration.
Proofs are both immediate from the respective definitions. = -+ -

REMARK Our intent 1s emerging.. It'is to estimate ¥ by.¢.and ¢
'byxloc z-1 xo; (u). - This~ last estimate involves no. sumimations ‘or
other number theoretic considerations. For the most part ‘we omit the
second step, from ¢ to:x log*~ Xez (). Prop031t10n 6 can be generalized
to contain a finite series of decreasing powers . of Iog X, and a similar
result holds for 7\, as well as . Note that the difference between
P (x, y; z)and x Togs? xp, (u) is “small” because F(t, z) is close to

G(z)tlog=1 .. (See Introduction, (1).)
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PROPOSITION 7. If f; (%) has finite L, norm, then o () =0 if <0
and. -

. . . ‘
foy=c expj% (zets— Ddsift>0. (18)
1 N .

ProoF, Formal calculations give

f';(t) =C €Xp J-% (ze—is —_ 1) ds (19)
1 .

Thus equality holds if and only if (19) has finite L, norm. This occurs if

and only if z=1 or Re(z) > 1. Note also that if Re(z) > 1, f: (0) =

so that [ﬁ (@) du=0. This also follows from integration by parts.
0 .

For there exists a sequence b, of real numbers such that b, > » and such

that b, f: (br) = O (1).. (Because f; has finite L, norm.) And if one
I . bn o
integrates by parts the expressionJ’ fz(u) du, in view of (14) the limit as
’ :
n— o is 0. o
§3. The main results. We shall be principally concerned with proving
that ¥ is clese to ¢. Asshown by propositions of §2, ¢ is close to
x log"1 xp; (u). This last can bé'imprcved by replacing G(z)t log=-1 ¢
in Proposition 6 by the series estimate (1) of §l. These functions in
turn are accessible to study via Fourier series' techniques, as indicated
by Proposition 7. '

THEOREM 1. For all integers r > 0, for all p' prime, for all € > O there
exists C>0 such that for all x >3, for all y> 2, forall z such’»that
[z]| < ¢ =p' —e, we have

IA"(x Y, 2, C)"- }‘ (xa Y, Z, C)] <
< | Cx log® x (log log x)" u!? (1 + log (u + 1))R(y)l (20)

REMARK. In less precise language, A, (x, », z; ¢) is near A, (X, y, z, €)
uniformly in x, y, and z throughout the . indicated range. Recall that
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w==Jog x/log y so that the estimate is of. no_value if, for mstance,
u> x.

" COROLLARY 1. With the same conditions as above, whenr = 0 we have

1P, 9 2, ¢)—4(x, 3, z,0)| < : :
< | Cx (log x)=~*u¥ (1 -+ log (u + 1) R(¥) . e

COROLLARY 2. - With z=1, r =0, c <2 one has an estimate for
W (x, y), the number of integers < x all of whose prime factors are < y.

|'¥ (%, ») — Lh (x, ¥y L DI< CXH(IOg u-+1) R(J’)' (22)

REMARK. Corollary 2 improves shghtly on [4], where one had #2 in
place of u (log u + 1).

ProoFr or THEOREM 1. Fix r >0, p prime, ¢ >0, and ¢ __p —e.
Agam write ¥, ¢, A, A without ¢. Let
A=Ay h 2,1 = EZA,(x/p,p, z) +
+ A (¥lps £, 2) (P2 < p < PP} —
oo )
— [ eA @it 2+ Al 4 2) diog 1. @3)
y
Thus A is the error that results from replacing dr(z) by.dtflog t.
There is an heuristic principle that this error‘ is small, and the usual
proof is an exercise in the application of the prime nhmber theorem,

LetA(m)=Ax, », h, z,n) =0 (n, z) ( > 11— I dt/log t ) where J
PEJ :

is the interval [p(n), x/n] N [y, y*], p[1n) denotes the largest prime factor
of n, and where 6 (n, z) = 0 if some prime factor of n is < c, else

0 (n, z) = z00-r+1 T Q1) = m).

m=a—
Note that > A(#n) = A, a direct consequence of the definitions of A and

n=1

of A(n). The sum is-finite since if n > x/y, J is empty and A (n) =

We éeparate the range 1 < n< x/y in which A (#) may be non-zero.

into two intervals: 1<{n<x/y" and x/y"<n<x/y If n<x/yt



362 JEAN-MARIE DEKONINCK axp DOUGLAS HENSLEY
|A ()| < CO(n, 2yt R(flog y.. And: if x[yh < n<xfy, “|AM|<
CO (n, z) xR(»)/n log y. o

LEmMMA 1.. There exists C.> 0 such that for all z satisfying:| z|-<< p' = e,
Jorall x 23,22, for all h satzsfymg 1<hg2,
A (x,,h,z,r)| <|Cx log *-* x (log log ) R(y)-(h— 1 —} 1/log »)|. (24)

" PROOF oF LEMMA 1. Summing the estimates of A (n), we have ~
2 GV R( B, 2)/log y <(CVR(¥)/logy) X 0(n,2). (25)

ngx/ yh ngxl yh
Now G(n z) =2z 29"‘)" H Q (n) m) + 129(") r+1 H (Q (n) — m), so0
m=Q "ll’

}: B(n z)——zA, (x/) Ay X[yh, z) -{—rAr_l(x/y" x/y" z); Now from (6)
n&xfyh
of §1 we have A,(s,s, z) < Cs max (1, | log#1 s|) max (l log Io0 s))

Thus this last sum of two terms is < C(x/v") max (1 ]logz-1 (x/y") 1)
max (1, (log log (x/y%)"), and : :
ST Am) ] < | CxR (y) log#=1 x(loo log x)'/logy] 26)
n<xlyh .
To prove the lemma we need a similar estlmate for the range
' x/yh < n<nly. We proceed to give one. )

. We have '
DR oz CxR(y)B(n,Z)/niogy
x/yh<n<x/y o o
C=CxR()logy) ¥ 0, n.
x| yh<nxly
And .
. ) Cxly ‘
> e(n, )n= j ()0)dA, (4, 1, 2) +
- Xyh<nxly -
x/yh :
xly . ) . : B .
+- .‘ (r/t)dAra(t, t, Z)  [variable of integration f]
 xlyh - E
t=x]y . X[y
—G@0A6LD | HCDAm 6D |+
vt-xlyh : tix/yh
Xy S _xly
+I @) Ar (1, 1,2) di + J /%) A,_, 1, z) dt

x/yh X yh

(27)
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Now from (6) with ¢ = 0 we have, smce A (z) and its first r derwatwes ,
are bounded for ]z|< G, - T
| A (2, 1, 2)| < Ct |1og=1 1] (log log £ (28)
for |z| < cand>3.. For¢< 3 we note simply that] A, (1,2, 2)| < C

Now in view of (28), the first two terms of (27) are < C|log* x |
(log log x)r, and the integrals of (27) are < C | log** x | (log-log x)".
xly ) ) e oL

dtft = C|log** x| (log log x)r (h — 1) log y. Together with (26), this
proves Lemma |,

t ¢ and r are fixed, we define Dy (x, y, 2) = Ar(%,y,2) —

Reculling hy

A (X, 0, 2. We must show that Dy is small. From Propositions 2 and 4,
with 'i;héd@imitiati of A, D, satisfies the dppnoxnmate recursion
wh N
Dy (x, yhy z) == Dy (¥, Py 2) WI 2Dy (x/t, t z) dt/logt+_ -
« o o
yh
+ J FDeaa (xltyt, 2) dt/logt + A(x A /z, Z r)
Thus | Dr (x, y, 2) | <[ Dr (%, 1 2)| 4 | 2] f | Dr (xfs, 5, ?) l,,ds,/ls;g s+
' Y.

. yh

4r j | Drca (x5, 5, 2) | dsjlog s + A (x, , by 2, 7).
v . N ‘ - .

Note that D, (x, x) = 0. If we were to start with y = x and decrease
¥, the recursion would keep D (x, y) == 0 were it not for A. Desplte A
the error is controllable. We now prove Theorem 1. '

Suppose that for some integer / > 0, ;
|1Dr (%, 2)| <] C() xlog x R(y)-(log log x)* ~~ (30)
ify'>x and ¥ < r ' o

For yvsu¢h that Y"1 >x >yl leth= 1 + l Now

T
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o

ID,: ¥, z)| D, (x, y" Z)]+ZX | D,s (x]s, s, 2) | dsflog s +
¥y

’

Er |D,:_1 (x/s, §,-2)| ds[log s + lA(x ¥y b, z, )}

<

, Usmg our induction assump’uon this is
< C(l)|xlog=tx R(y)(log log x)" |+

+ l z .‘. c ;_E log#-1 (x/s) R(¥) (log log x)' ds/log s

h g
yh

r l I c® gyf log! (x/s) R (y) (log log x)'~* ds/log s.
y | + | Cx log=tx (l“og log x)'|.

N

+

Evaluating and simplifying, this is

< C ()| xlogs-* x R (¥) (log log x)"" (1 + |z|/l + r'/l log log X) | +
+ Cx|log=tx (log log x)r' 1.

Let C+)=Cdy(L+]|z|/! +.¢'/l loglog x) + C. Then the induction
hypothesis (27) is satisfied for  + 1.

It remains to bound C (/) as /— . From the recursion for C(I)
we have C(I) = o (l#trivglee # Jog [).  Since u = log x/log y, if -y > X,
u< . Replacing / with u, then, gives T heorem 1. (The factor uriicslos~
which appears in the final estimate isin fact bounded, since u = log x/logy
and x > y, and so is not included in the statement of Theorem 1.)

§4. Applications. If z is a positive integerv, I 3 d¥ (x,y,z) (x the
variable) is important to the estimation of '
2pn(n)II(l—Z/p){n c<p< yif pln, n<x}

This expression occurs in large ‘sieve estimates when a set of x
‘consecutive integers is sieved by removing z congruence classes mod p
for each prime p, c<p<y. For more on this, see [7, 8]. Another
reason for requiring | z | < ¢ is apparent here; if z=p, the set is cleaned
out entirely when all the congruence classes are removed mod p.
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To estimate 2 Q (n) (n < x, p<yif p|n} let z=r=1. To estimate
sums of polynomials in Q () taken over the same set as above use linear
combinations of A, (x, y, 1) for 0 < r < deg (polynomial).

To estimate 21 {n: Q(n)=W mod ¢, n<x,p<y if p|n}, take a
linear combination of ¥ (x, y, &) over the gth roots « of 1. Thus e.g.
thh w=-exp (27i/3), 21 {n:n<x, Qm)=1mod 3, p<y if p|n}=

=3 (oc2 ¥(x,y, a) +a¥(x,p 09+ 1% (x,y,1)). We hope that this

does not exhaust the list of applications.
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