Canad. Math. Bull. Vol. 21 (4), 1978

AN ASYMPTOTIC FORMULA FOR RECIPROCALS OF LOGARITHMS OF CERTAIN MULTIPLICATIVE FUNCTIONS

BY

JEAN-MARIE DE KONINCK AND ALEKSANDAR IVIĆ

Sums of the form $\sum_{n \le x} 1/\log f(n)$, where f(n) is a multiplicative arithmetical function and \sum' denotes summation over those values of n for which f(n) > 0 and $f(n) \ne 1$, were studied by De Koninck [2], De Koninck and Galambos [3], Brinitzer [1] and Ivić [5]. The aim of this note is to give an asymptotic formula for $\sum_{n \le x} 1/\log f(n)$ for a certain class of multiplicative, positive, prime-independent functions (an arithmetical function is prime-independent if $f(p^{\nu}) = g(\nu)$ for all primes p and $\nu = 1, 2, ...$). This class of functions includes, among others, the functions a(n) and $\tau^{(e)}(n)$, which represent the number of non-isomorphic abelian groups of order n and the number of exponential divisors of n respectively, and none of the estimates of the above-mentioned papers may be applied to this class of functions. We prove the following.

THEOREM. Let f(n) be a multiplicative arithmetical function such that for all primes p and $\nu = 1, 2, ...$ we have $f(p^{\nu}) = g(\nu)$, where g(1) = 1, $g(\nu) > 1$ for $\nu \ge 2$ and $\lim \inf_{\nu \to \infty} g(\nu) > 1$. Then we have

(1)
$$\sum' 1/\log f(n) = x \int_{-\infty}^{0} (C(t) - 6/\pi^2) dt + 0(x^{1/2} \log^{1/2} x),$$

where $C(t) = \prod_p (1 + \sum_{k=2}^{\infty} (g'(k) - g'(k-1))p^{-k})$, and \sum' denotes summation over those values of n for which f(n) > 1.

Proof. First of all $f(n) \ge 1$, and f(n) = 1 if and only if n is square-free, or equivalently if and only if $1 - \mu^2(n) = 0$, where $\mu(n)$ is the Möbius function.

Let us define

(2)
$$\sum_{n \leq x}' f'(n) = \sum_{n \leq x, f(n) > 1} f'(n).$$

Then we have

(3)
$$\sum_{n \le x} f'(n) = \sum_{n \le x} (1 - \mu^2(n)) f'(n) = \sum_{n \le x} f'(n) - \sum_{n \le x} \mu^2(n)$$
$$= \sum_{n \le x} f'(n) - \frac{6}{\pi^2} x + 0(x^{1/2} \exp(-C \log^{3/5} x (\log \log x)^{-1/5})),$$

where C is a positive constant (see [9]).

Received by the editors September 19, 1977 and, in revised form, February 6, 1978.

We now proceed to estimate $\sum_{n \le x} f'(n)$ for $t \le 0$. For Re s > 1 we clearly have

$$\sum_{n=1}^{\infty} f^{t}(n)n^{-s} = \prod_{p} (1+p^{-s}+g^{t}(2)p^{-2s}+g^{t}(3)p^{-3s}+\cdots)$$
$$= \zeta(s)\prod_{p} \left(1+\sum_{k=2}^{\infty} (g^{t}(k)-g^{t}(k-1))p^{-ks}\right) = \zeta(s)g(s,t),$$

where $g(s, t) = \sum_{n=1}^{\infty} h(n, t) n^{-s}$, h(n) is multiplicative and

$$h(p^{j}, t) = \begin{cases} 0 & j = 1, \\ g^{t}(j) - g^{t}(j-1) & j \ge 2. \end{cases}$$

Since $t \le 0$ we have $|h(n, t)| \le u(n)$, where

$$u(n) = \begin{cases} 0 & \text{if there is a } p \text{ such that } p \parallel n, \\ 1 & \text{otherwise,} \end{cases}$$

so that $\sum_{n \le x} |h(n, t)| \le \sum_{n \le x} u(n) = O(x^{1/2})$. Denoting $w = g^t(2)$ for shortness, further factoring yields

(4)
$$g(s, t) = \zeta^{w-1}(2s)u(s, t),$$

where for $t \leq 0$,

$$u(s, t) = \prod_{p} (1 - p^{-2s})^{w-1} (1 + (w-1)p^{-2s} + (g^{t}(3) - w)p^{-3s} + \cdots)$$
$$= \prod_{p} (1 + (g^{t}(3) - w)(1 - p^{-2s})^{w-1}p^{-3s} + 0(p^{-4s})),$$

so that if $\sum_{n=1}^{\infty} c(n, t) n^{-s} = u(s, t)$, then for every $\varepsilon > 0$ and uniformly in $t \le 0$,

$$\sum_{n\leq x} |c(n, t)| = O(x^{1/3+\varepsilon}),$$

and partial summation gives

(5)
$$\sum_{n>x} |c(n,t)| \ n^{-1/2} = 0(x^{-1/6+\varepsilon}).$$

If we set $\sum_{n=1}^{\infty} b(n, t) n^{-s} = \zeta^{w-1}(2s)$, then we have by a result of A. Selberg [7]

$$\sum_{n \le x} b(n, t) = \Gamma^{-1}(w-1)2^{2-w}x^{1/2}\log^{w-2}x + 0(x^{1/2}\log^{w-3}x),$$

which gives uniformly in $t \le 0$

(6)
$$\sum_{n \le x} b(n, t) = 0(x^{1/2} \log^{w-2} 2x).$$

410

[December

From (4) it follows that

$$\sum_{n \le x} h(n, t) = \sum_{n \le x} c(n, t) \sum_{m \le x/n} b(m, t) = 0(x^{1/2} \sum_{n \le x} |c(n, t)| n^{-1/2} \log^{w-2} 2x/n).$$

Since $\sum_{n=1}^{\infty} |c(n, t)| n^{-1/2}$ converges we have

$$\sum_{n \le x} |c(n, t)| n^{-1/2} \log^{w-2} 2x/n = \sum_{n \le x^{1/2}} + \sum_{x^{1/2} < n \le x}$$
$$= 0(\log^{w-2} x) + 0\left(\sum_{n > x^{1/2}} |c(n, t)| n^{-1/2}\right) = 0(\log^{w-2} x) + 0(x^{-1/12+\varepsilon}) = 0(\log^{w-2} x)$$

so that

$$\sum_{n \le x} h(n, t) = 0(x^{1/2} \log^{w-2} x) = 0(x^{1/2} \log^{-1} x),$$

since for $t \le 0$ we have $w \le 1$, and partial summation gives

$$\sum_{n>x} h(n, t) n^{-1} = 0(x^{-1/2} \log^{-1} x).$$

Now take $y = x/\log x$, $z = \log x$. From $\sum_{n=1}^{\infty} f^{t}(n)n^{-s} = \zeta(s)g(s, t)$ we get

$$\sum_{n \le x} f^t(n) = \sum_{mn \le x} h(n, t) = \sum_{n \le y} h(n, t) [x/n] + \sum_{m \le z} \sum_{n \le x/m} h(n, t)$$
$$- \sum_{m \le z} \sum_{n \le y} h(n, t) = S_1 + S_2 - S_3.$$

$$S_{3} = 0(zy^{1/2} \log^{-1} x) = 0(x^{1/2} \log^{-1/2} x).$$

$$S_{2} = 0(x^{1/2} \sum_{m \le z} m^{-1/2} \log^{-1} x/m) = 0(x^{1/2} \log^{-1} y \sum_{m \le z} m^{-1/2}) = 0(x^{1/2} \log^{-1/2} x).$$

$$S_{1} = \sum_{n \le y} h(n, t)(x/n + 0(1)) = C(t)x + x \sum_{n > y} h(n, t)n^{-1} + 0\left(\sum_{n \le y} |h(n, t)|\right)$$

$$= C(t)x + 0(xy^{-1/2} \log^{-1} y) + 0(y^{1/2}) = C(t)x + 0(x^{1/2} \log^{-1/2} x),$$

so that we obtain uniformly in t.

(7)
$$\sum_{n \le x} f'(n) = C(t)x + O(x^{1/2} \log^{-1/2} x),$$

where

$$C(t) = g(1, t) = \sum_{n=1}^{\infty} h(n, t) n^{-1} = \prod_{p} \left(1 + \sum_{k=2}^{\infty} (g'(k) - g'(k-1)) p^{-k} \right).$$

1978]

Putting (7) into (3) and integrating from -T to 0(T>0) we get

(8)
$$\sum_{n \le x}' \frac{1}{\log f(n)} = x \int_{-T}^{0} (C(t) - 6/\pi^2) dt + 0(x^{1/2} \log^{-1/2} x \cdot T) + 0(Tx^{1/2} \exp(-C \log^{3/5} x (\log \log x)^{-1/5})) + \sum_{n \le x}' f^{-T}(n) / \log f(n).$$

To estimate $C(t) - 6/\pi^2$ for $t \le 0$, let $C(t) = \prod_p (1 - p^2 + u(p, t))$, where

$$0 < u(p, t) = g^{t}(2)p^{-2} + (g^{t}(3) - g^{t}(2))p^{-3} + (g^{t}(4) - g^{t}(3))p^{-4} + \cdots$$

= $g^{t}(2)(p^{-2} - p^{-3}) + g^{t}(3)(p^{-3} - p^{-4}) + g^{t}(4)(p^{-4} - p^{-5}) + \cdots$
 $\leq g^{t}(r)(p^{-2} - p^{-3} + p^{-3} - p^{-4} + p^{-4} - \cdots) = g^{t}(r)p^{-2},$

where r is an integer such that $g(\nu) \ge g(r) > 1$ for $\nu = 2, 3, \ldots$. Such an integer certainly exists, since $\liminf_{\nu \to \infty} g(\nu) > 1$.

Using the inequality $\log (x + y) \le \log x + y/x$ (x, y > 0) we get

$$C(t) = \exp\left(\log \prod_{p} (1 - p^{-2} + u(p, t))\right) = \exp\left(\sum_{p} \log(1 - p^{-2} + u(p, t))\right)$$

$$\leq \exp\left(\sum_{p} \log(1 - p^{-2}) + \sum_{p} (1 - p^{-2})^{-1} u(p, t)\right)$$

$$\leq \frac{6}{\pi^{2}} \exp\left(g^{t}(r) \sum_{p} (p^{2} - 1)^{-1}\right) \leq 6 \exp(g^{t}(r))/\pi^{2}.$$

If t < 0 is small enough we get

(9)
$$0 \le C(t) - 6/\pi^2 \le (6/\pi^2)(\exp(g^t(r)) - 1) = 0(g^t(r)),$$

(10)
$$\int_{-\infty}^{-T} (C(t) - 6/\pi^2) dt = 0 \left(\int_{-\infty}^{-T} g^t(r) dt \right) = 0 (g^{-T}(r))$$

If $n = p_1^{\nu_1} \cdots p_i^{\nu_i}$, then $f(n) = g(\nu_1) \cdots g(\nu_i) \ge g(r) > 1$ if f(n) > 1, so that $f^T(n)\log f(n) \ge g^T(r)\log g(r)$ if f(n) > 1, and we obtain

(11)
$$\sum_{n \le x}' f^{-T}(n) / \log f(n) \le \sum_{n \le x}' g^{-T}(r) / \log g(r) = 0 \left(g^{-T}(r) \sum_{n \le x} 1 \right) = 0 (g^{-T}(r)x).$$

Writing $\int_{-T}^{0} (C(t) - 6/\pi^2) dt = \int_{-\infty}^{0} - \int_{-\infty}^{-T} dt$ using (10) and (11) we get from (8)

(12)
$$\sum_{n \le x} \frac{1}{\log f(n)} = x \int_{-\infty}^{0} (C(t) - 6/\pi^2) dt + 0(g^{-T}(r)x) + 0(x^{1/2}\log^{-1/2}x.T) + 0(Tx^{1/2}\exp(-C\log^{3/5}x(\log\log x)^{-1/5})).$$

Now take $T = \log x/2 \log g(r)$. Then we have

$$g^{-T}(r)x = \exp(-T\log g(r) + \log x) = \exp(\frac{1}{2}\log x) = x^{1/2},$$

and so the theorem is proved.

[December

1978] RECIPROCALS OF LOGARITHMS

As a first example, let us take a(n), the number of non-isomorphic abelian groups of order *n*. It is well-known (see [4]) that a(n) is multiplicative, and that $a(p^{\nu}) = P(\nu)$ for any prime *p* and $\nu = 1, 2, ...$, where $P(\nu)$ is the number of unrestricted partitions of the integers ν , so that $P(\nu) = 1$ if $\nu = 1$ and $P(\nu)$ is strictly increasing with ν . Therefore the conditions of our theorem are satisfied, and (1) holds with f(n) = a(n), g(k) = P(k). Note that in this case we have $\liminf_{\nu \to \infty} g(\nu) = +\infty$ and r = 2, g(r) = 2.

Examples of other multiplicative, prime-independent functions that satisfy the conditions of our theorem may be readily found among enumerative functions of certain algebraic structures. Such is for example (see [6] for a detailed discussion) S(n), the number of non-isomorphic semisimple finite rings of order n.

Finally let us consider $\tau^{(e)}(n)$, the number of exponential divisors of n. A divisor $d = p_1^{b_1} \cdots p_i^{b_i}$ is called an exponential divisor of $n = p_1^{\nu_1} \cdots p_i^{\nu_i}$ if $b_1 | \nu_1, \ldots, b_i | \nu_i$ (see [8]). It follows that $\tau^{(e)}(n)$ is a multiplicative, prime-independent arithmetical function for which $\tau^{(e)}(p^{\nu}) = \tau(\nu)$, where $\tau(\nu)$ is the ordinary number of divisors function. Since $\tau(1) = 1$ and $\tau(\nu) \ge 2$ if $\nu \ge 2$, the conditions of our theorem are satisfied and (1) holds with $f(n) = \tau^{(e)}(n)$ and $g(k) = \tau(k)$. Again it is of interest to note that $\lim \inf_{\nu \to \infty} g(\nu) = 2$ and r = 2, g(r) = 2 also.

References

1. E. Brinitzer, Eine asymptotische Formel für Summen über die reziproken Werte additiver Funktionen, Acta Arith. XXXII, 1977, pp. 387-391.

2. J.-M. De Koninck, On a class of arithmetical functions, Duke Math. Journal, 39, 1972, pp. 837-818.

3. J.-M. De Koninck and J. Galambos, Sums of reciprocals of additive functions, Acta Arith. XXV, 1974, pp. 159-164.

4. I. N. Herstein, Topics in Algebra, Blaisdell, Waltham, Mass.-Toronto-London, 1964.

5. A. Ivić, The distribution of values of some multiplicative functions, Publications de l'Institut Math. (Belgrade), **22** (36), 1977, pp. 87-94.

6. J. Knopfmacher, Abstract Analytic Number Theory, North-Holland/American Elsevier, Amsterdam-Oxford, 1975.

7. A. Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc., 18, 1954, pp. 83-87.

8. M. V. Subbarao, On some arithmetic convolutions in the theory of arithmetic functions, Lecture Notes in Math. 251, Springer-Verlag, Berlin-Heidelberg-New York, 1972, pp. 247-271.

9. A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Verlag, Berlin, 1963, pp. 192–198.

JEAN-MARIE DE KONINCK DÉPARTMENT DE MATHÉMATIQUES UNIVERSITÉ LAVAL QUÉBEC, P.Q. CANADA, G1K 7P4

Aleksandar Ivić Rudarsko-geološki fakultet Djušina 7, 11000 Beograd Yugoslavia