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§ 1. Introduction.

An arithmetic function f is said to be.additive if f{mn) = f(m) +

J(®), when (m, n) = 1. Sums of the form I’ 1/f(n) have already
n<x

been studled[l} [31, (here X denotes summation over those values.
of n for which Jm 5£0). Ina 1ecent paper [2], we have obtained

" asymptotic expansions for X’ Q(n)/oo(n) where the addltlve func-
o X

tions () and o(n) denote the total number of prime, factors of # and.
the number of distinct prime factors of n, respectively. Our estimate
was based on a deep analytlc result of A. Selberg [6]

The purpose of this paper is to study sums of quotients of additive
functions for different classes of functions. Also we shall point out a
more elementary method which permits us, in certain cases, to obtain

the first two terms of the asymptotic expansion of 3’ gm)[f(n) ; the
nx
method is essentlally due to Janos Galambos*, '

' §2. Notatlon

“¢(w) denotes the Riemann Zeta F anction, The numbers €, €1, C2,.-
denote absolute positive constants. The numbers r and s denote
positive integers. Finally p and ¢ stand for prime numbers.

§3. Additive fanctions which ““behave like c log log, .

Theorem 1. Let g and f be two additive funotlons for which
there exist two positive constants a and b such that.the two series

k, Z f(p) and Z g (p ) converge absolutely, also assume that
p p

*Private communication.
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1 = 0 (x/(log x) ), (D
Z gm) = 0 (x/(log log x)%), (2
<

Vigmr =0 | (3
ngx :
fin) =0
and that | f(p") | < carand | g(p") | < ¢ r, for all primes p and
integers r = 1, where ¢; depends only on f and g, Finally suppose
that the function f satisfies the additional condition.

fim#£E0 f(n) = c, for each integer 7 = 1,

“Then |
_g@l_ bxf, . 4 z
R x 14 lglgx+oa/aoglogx>} (4
n's x
with d= J F (0 =p) @)= f @)
r=1p '

Proof. First of all, note that, without loss in generality, we can
assume that @ = b = 1, for otherwise consider f,,(n) = g-1 f(n) and

go(n) = b-1 g(n), and then we have Z, %;— Z ng;,((:)) .

n<Lx oKX
Now let D(n) = g(n) — f(n) and, for f(n) #0,
h(n)=(g (M!f(n)—1log log n. We wili show that

L Yok =L Y D+ 0(1/(log log x)°),

nx nx
from which (4) will follow by partial summation and by the use of
relations (1) and (2).

Now clearly, when f(n) # 0,

h(n) = D(n) L"—gf(l—;;—)gl’ ~ D@) + D(n){l‘&f(l%&’.’— _1}.‘
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Thus

Yok =Y Do+ T b {Je&les.ﬁ. —1}
n X n << x n<x

We want to prove that

i\ Z D(n)-5 19%;? " 1} = 0(1/(log log: 'x)%). (5
X

But, by Schwariz inequality, we have

I4

[ I o »-—h—l"’ng(‘igg n —1}}2

W,

ny
< Z; Dz(n) Z' ( log logﬂ(z)— S )
n<x ngx
’ —~7 S =’ L
< L v L deglogn—smr Ly @
n<x n< x nsXx
Hence
. loglogn
L oo 5 =1}
nx .
< JoZ OO [ Goglegn =~ )t ¥ TGN
ns X Nnx 7 nsx '
Assume for the moment that the following relations are true:
¥ D) =0 (D NG
Tngox
L (log Iog n— f(n) )¢ = 0(x(log log x)2) 8)
n<x
0 1(f(n) )t = 0(x/(log log x)%) )]
ng x '

Then, substituting these in (6), we obtain '(5)\ ‘and our thg_ox‘e’m' is’
proved. It remains to prove (7), (8) and (9).

First observe that

B R - R R )
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= ¥ 3 (D" - DE™H) D) - DETH)

ngx pln
g in
~ T 0w~ D) 06 - D) [ ]
p<x
F<x
PFq
+ L 00) - D) 0) - D) o]
pPEpiex
[ Z (D@ = DE-Y[ D) —-D @]
< %4 P’ 7
< x*, P x : s
L@y .
¢ Y RO =D pgs - Dy
PIEPIX J
Now uéing the fact that Z—]—)}E—E}— converges absolutely and the fact
r

that | D(p") — D(p"~?) | < 4c¢yr, for each integer r = 1, one easily

obtains that = D?2(n) = 0(x), which together with relation (3) proves
n<x ‘

relation (7).
In order to prove (8), it is sufficient to prove that

Z (f(n) - log log x)* = 0(x(log log *c)z) Now write
n< X g
iy

Z (f(n) — log log x)* = Z (——l)i( ? > (log log x):
n<x i=0
(Y (). o)
n<sx
Then we proceed to evaluate separately X (f(n))J for j=1, 2,
n<x

3, 4, and by using the fact that
f(p) Z f(p) LI Z

L.|
psx P X p<x
-1
= Z f(—p)p———-.f-loglogx + ¢3 + 0(x/(log x))
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and that | fA(p")| < c1r, for each integer r = 1, it follows, after
some computations, that the right member = of (10) becomes
0(x(log log x)?), as desired. '

Finally relation (9) is easily established by observing that

f(m) = jE fp"H > co [Z[ 1 = ¢z Q (n), when f(n) =~ 0, and then
p" p'lin

proceeding as in § 2 of [3].
§ 4. Additive functions which “behave like ¢ log .

We now consider a different class of additive functions. In fact
we prove the folowing.

Theorem 2. Let g and f be two additive functions for which
there exist two non-zero constants ¢ and b such that, for each prlme
p and integer r = 1,

g(p") = brlogp + Ry (p)
and f(p") = arlogp+ Rr(p),

with | Ra(p") — Ru@™) | < “4Jp™ , for some a > 0, uniformly in
= 1, whenh =gorh=f. Also assume for s1mp11c1ty that f(n)#0,
for all integers n = 2.

Then, given any positive integer «, we have

, . | - :
L fgg x{( T+ Z (log 5 TO (___1_;:1)} (113

n< X L i=1 (log x)

where the e;’s are computable constants..

Proof. As in the proof of Theorem 1, we can suppose
that ¢ = b = 1.

We first proceed to estimate = g(n)¢f(n)t, for ueq,ui <n<l/4
n< X

and r¢ [—%, 0]. Define g1 () = eg(n) and fi(n) = ef(n). Then g (n)
and fi (n) are multiplicative, which implies that, for w & @ and
Re(w) > I, we have
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S:O (gi~a(»ti)n?’i)" hmm Y H( ix (gq(p)w)“ (/1 (p)rl)t )
. ne r ¥
n ==

==C(w) 0= pr) (1 &)
p 4

, =.0(w) Glw.; u, 1), say.
Using the conditions on f and g, one: can easily prove.that
G(1 ; u, t) is absolutely convergent uniformly in » and ¢. This permits
us to apply fornmla (1 16.22) on p. 47 of [5] and obtain
T oy (imy =x [ 0D ot ma B ).
n< x o n< X d<xy

(12)
where the constant in 0(...) is independant of u and ¢, and
H(d, u, 1) = X h(n, u, t)

n'g
We now show that (12) can be replaced by
) Z @O (@ = 5 Gl w0+ o' 79,
uniformly in u and ¢, for some & > 0.
For this, we observe that ;
Vip, w, 1) | = | (&1 ()2 (Sf1 (PIp~2)F = 1|
= | exp Re(p) + Ry (p)t) ~ 1|

< |Re(p + Rr(o)e |+

(| Re()| e;_t'Rf_m) D,

<R+ | Re€p) | +

e — Ay
5 oS 2 Ccq D 2
<2eap _;.'.L:;_C‘Lg'—)__g__v.”

<6C4p—)\
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Now, forr = 2
| A(p", u, 1) | = l (2P~ fi(p Pt = (&P PSP '1)P"+1)t
= | exp Re(p"u+Ry(p)1)—exp (Rg(l’f‘l)u"*‘Rf (r-Hy) |
=|(exp( ) = 1) = (exp (-..) = )|

= | Repu+Rr () + G5 4 - R (7'

TR () = G =

= [ (Rg(p")=Rg(p"™1)Ju + (Rr(p") — Rr (p'-1))t’
Re(P)u + R (P2~ Re(p™ 1t + Ry (p™=1)1)?
+ > +

< | Ry ~ RerD| + | Ry () = Ry (D) |
o+ [RD AR P+ Re(@') + Re(MY ¥

P

26’4 2 Ca 2 “2‘(‘4 3
+2v( )TSV(r)\ S
» 7 o

12 Ca
< rx
o
Hence, since h(n, u, f) is multiplicative, we have
(H(@dw )| =| = oty S 5 UA ]
n S
= 2 I Jh(p,u,r)J < = M, 12¢
n<d plin n<dpln ?i"

But X (12 04)9( " can be shown to: be O(d (log d)12 et

e ) (see [4]).

Hence,'“by partial summaﬁon, we have that
by

n§ (12 e 2 o(a' “Paog ) 247y —0(d! T 7).
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Therefore
y - A
Max | H(d, u, ) | = 0(x 4).
d< y/x
Finally
‘ h(n, u, 1) | h(n, U, 1)
e o i e
n>Xx n>Xx |
=7 H(p, v, t) —H@m — L, )| ¥ 1 H@m, 08 |
T n - “am+ 1)
n>x n>x
A
. IH(n, u, Nl - A7
) Z
n>x n>x -
= 1= _ 2
s I 7 = 0( 2). (143
n>x
Hence using (13) and (14), we can replace (12) by
5 h
2 H t
Y @Ay = ) HmBD g g0l70,
n<x n=1

for some € > 0, uniformly for # e [—21, 0] and |u| <
This implies that

S g (e Sl et = % G(Ls ) + 0G0,
n=<x |
and thus
Z g (e f1 nt= Z gi(mfi (n)t S
n< X n< x

l—etutt

= G(l;unx T 4 o —f * (G(LuHy)u+ e+ dy

+o(fTy" (u+r>y”+’ a)

G(1;u,t -
= (005w 0 - SEESEED ) ol e re
(1)
7 + ud-r+1
_ Gl u 0 xu+t+1 1—s+u+z)

RREEEER o
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Now
. 1 G :u,t y+t4+1
Vosrn s = [ OG0
ns X
L GUu /u—}—H—l 10g x + 0( —etut? log x)

TR W |
where we made use of Cauchy’s inequality to estimate the error term,
Setting u‘=0 in this last relation, we obtain

d G ;u i G(1:0,) t+1

Z g(n) bal (”I)t = ”Eﬁ; 'ﬂ"’lz’:ii“‘“ qub 4* f+1 log x
nx '
0( - 8+tlog.x)
== 7(1) xt + G(It_?_lt) 1 og x+0(x +tlog x) (15)
‘ ' . d  G(; yit)
where we have written Z(¢) for vy 7?1‘ | ‘ u =0
Then observe that
N 0
[ sownemra= T 8 pwl
-3 ngx n<x
() "8y o34 :
L Jey~ L qm Ao (1o
n < X ns<sx P e

but by the conditions on f and g, we gave

L SGaem 0 I oaw ™

nE X nx
exp ((=3/4) I Ry(@"))
e I prlln
nsx ‘ . n3/4
- - I
<o ¥ n Mexp(@re = rp ™ =00 4. a7
n<x ‘ pln '

The fact that this last expression is O(xl/ 4) can be seen as follows. Let

- FA
)

k(n) = exp ((3/4) ey T rp
piln
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then k(n) is easily seen to be multiplicative and observing that

Z k(n) n=% = {(w) I (w), where /(1) = 0(1), we can use Reny1 s
n =

theorem (see {5]) and obtain that X k(n), == 0(x) , hence
TnE X ‘
- ]
3 kT o,
n x

Now taking into account (16) and (17), we integrate both sides
of (15) between — 3/4 and 0, and using essentially the same procedure
as in {3], we have

0 0
el ] o
ns x —3/4 —3/4
‘ 1-¢
+0(x" )
_Jzoxa] O zex| O
AT (108 N3
G(1;0,) xt (log x) _ (,G(I;O,t)) xt (log, \) . 1
TG Dog W) 34 t+1 ) (og 02 y O )J>

- x{G(l 0.0) +isg 5 (Z(O) ( G‘t(_lﬁ(l)’,’) ) . 0) o O(x 8)},

which establishes relation (11_)_, and therefore our theorem is proved.

Now applying the method of proof of Theorem 1 to the class of
functions stated in Theorem 2, this time takjng

h(n) = (gM)[f(n) ~ 1) logn :

we obtain the followmg estimate :

) é\ = { + gt o l((l)c%;_o“gzx““)}

where the relative: 1mp10vement in the error term comes from the

followmg three estimates, analogue to relations (7), (8) and (9) of
Theorem 1 :

1 o
+ L Dxm =o),
ngx
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T (logn — f(n) )t = 0(x(log log x)%)
n'gx

S 1(fln) ) = O(x/(log X)9).
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