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1. Summary. In the present paper we shall investigate the problem
of finding asymptotic expansions for sums of reciprocals of additive
functions, in the light of probabilistic number theory. Our first obser-
vation is that for a large class of functions f(n), termed as prime inde-
pendent, the asymptotic formula

(1) DV 1/f(n) = a[1+0(1)][f(2)logloga]™
n<e

is immediate from known results, where >’ denotes summation over
those values of » for which f(n) s 0. We shall then point out the signi-
ficance of obtaining a second term on the right hand side of (1). The first
part of our paper is therefore a complement to the recent work [1] of
the first named author. In the gsecond part, an asymptotic expansion
is given for the sum of the reciprocals of logo(n), where o(n) is the sum
of the divisors of #. This part has two essentially distinct features from
the paper [1]. First of all, no reference is made to any deep result, and
secondly, the expansion is in powers of 1/logz. The discussion in the
first part will reveal that the increase from logloga to logw in the asymp-
totic expansion results, in general, in additional difficulty.

2. Sums of reciprocals and probabilistic number theory. Let w(n)
denote the number of different prime factors of n. A classical theorem -
of Hardy and Ramanujan states that “for almost all” n, w(n) ~ loglogn.
By giving an accurate meaning to the expression “almost all”, we shall
be able to obtain the desired asymptotic formula (1) for the case f(n) = w(n).
Since the theorem of Hardy and Ramanujan has several extensions, we
are able to start with a general set up. Our class of functions f(n) can
include, roughly speaking, all functions for which f(n) ~ loglogn for
“aglmost all” n. This is made possiblé by the function loglogn being slowly
varying in the sense that

(2) loglogn =loglogz+0(1), 2" <n<w, o->+oo.
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Let now f(n) be a given arithmetical function and let R (z) be a j@bsitive
function tending to + co. Let A (2) denote the number of positive integers
- # <& for which the inequalities

(3) loglogn — R(x) < f(n) < loglog# + R (x)

fail to hold. In view of (2), for f(n) > 1 for all those vélues of n when
f(m) # 0, we evidently have - ‘ :
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(4) and (5) imply (1) for any function f(n) having the property that
A(2) = o(x/loglogw) with R(x) = e (loglogw).

‘This is known to hold for a large class of functions. As a matter of fact,
the large deviation theorem of Kubilius [6] on p. 161, together with
the remark on p. 168, implies that, when (3) is applied to f(n)/f(2), where
f(n) is additive with f(p) = f(2) £ 0 for all primes p,

(6) A(i”) =0 (—(loglww) it R@) = (‘loglogw)”“",

where ¢ is an arbitrary fixed positive constant. Applying (4), (5) and (6)
to the function f(n)/f(2), f(2) # 0, satisfying the assumption above,
we get ' ‘

r 1 &z z
7 — = 0 .
" 2 o = ybess T (aoglogm)s”*-s)
(7) is a somewhat stronger statement than (1) by specifying the error
term. We add that the error term can be slightly improved on this line
of attack, but the order of magnitude «/(loglogz)*? can not be achieved
as it easily follows from the asymptotic normality of

(F(n) —f(2)loglogn) [f(2) (loglogn)"?

(see [5], p. 61 and the inequality ip [2]). Therefore, essential new in-
formation can only be achieved by determining the exact order of magni-
tude of the second term on the right hand side of (7). The finite asymp-
totic expansion obtained in [17] goes further than this.
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We remark that asymptotic formulas, similar to (1), can eagily be
obtained by the present approach for sums of ratios f(n)/g(n), if both
f{n) and g(n) are ‘close’ to loglogn (in the sense of the previous discussion).
(1) can also be extended to the case when the argument n goes through
given sequences of integers (others than the consecutive ones). This is
made possible by the probabilistic approach of the second named author
to distribution problems of arithmetical functions; see [3], [4]. For this
case, however, a much weaker error term is obtained than the one in. (7).

A major tool in proving (7) was the property (2) of the function
loglogn. When the role of loglogn is replaced by a function growing too
rapidly to + oo, our method may fail. To determine the order of magni-
tude of the sum in (1) remains, however, a simple problem for most func-
tions.

3. On the sum of the divisors of n. Let o(n) denote the sum of the
divisors of n. It is a classical result of probabilistic number theory that-
logo(n) = logn+ 0(1), for “almost all »’’, see, e.g., [5], p. 74. D. Rearick
asked (personal communication) if an asymptotic expansmn is valid for

Y 1/logo(n). The asymptotic formula

\ N 1fl0gs(n) = [1+0(1)]z/loge

2<n<e

can be established by the approach of the previous section. The error
term by this approach, however, can not be properly estimated. On the
other hand, by an analytical method, we get the following asymptotic
expansion.

THREOREM. Let o be an arbitrary positive integer. Then

- 1 - a; @
_ = -0
glogom) ”Z (logay’ (<1ogw>“+1)’

where a, =1 and, in general,

4 = (— 1P BV (1)),

:t+117( __)(1+2 (1+ +. +%)t), p prime.

Proof. Let us first estimate > o(n) for ¢ < 0. By the elementary

2N
property of o(n) bemg multiplicative, we have the following product
representation of the Dirichlet series of [o(n)/n] for s = u-iv, u>1

with

+ 00 t

St [T Skt )

n=1 P J=1
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. Dividing by the Riemann zeta function, we get

¢

ff_@:}ﬂ _ C(s)g(l—%){l—!—g%(l—l—%%— +;il;\)t}

40
hin, 1
=20 D' )g6,0), say.

Since ¢ < 0, ¢(1,¢) is absolutely convergent. By the formuls, (1.10.29)
on p. 47 of [6], we therefore have .

(8) 2 dn)nt =g ZW + 0(&71/21;1a.x |H (d, 1)]),
T n=1 <z

2

where the constant in O(...) is independent of t, and

H(d,t) = Y h(n,1).

n<d

We now show that (8) can be extended to -

(©) 2 dn™t = ag(1, )+ 0 (@ loga),

2Ny
uniformly in ¢e (—1, 0). For this burpose we prove that |H (d, ¢)] < 1+ logd,
independently of t. Indeed, by the definition of h(n, t), it is multiplicative
and at powers p’ of primes ‘

h(phyt) = (L4+p7 b p™ o b p i — (1 p=ia ity

Thus [2(p% 1)) <1 and h(p,t) = (L+1/pf—1> —1/p for all te (—1, 0).
Since h(p,t) <0, we got that [h(p, t)| <1/p, and therefore

H(d, t)l<éﬂlh@)l<égl/ﬁ<7é;1/%<1+logd.

The following estimate now completes the proof of (9).

X h(n,t) * T h(n, i) ' o ;
S < 277 H (21, 1)
,g; " 2 27'<n%z17'+1 " 2 :
Z* (J+1)log2+ . logx

where in 27 we sum for all integers j > (logx) /log2.
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After extending the definition of o(n) to all real numbers in an obvious
way as a step function, (9) and integration by parts yields that, for
—3/4<t <0, say, :

(10) Z o (n) = 2 dm)yn~tn' = g(l,‘t)wt“-l—O(,wl’z‘”logw)—

n<x n<ET

—J ot a0y (s 1ogy) 1y’ dy)
1 ‘ 1

tg(L, 1) gy tg(1,1t)

— 1 t f+1
g1, ) 1 1

+ 0 (22 + 1og x)

_g(1,7) wt+1+2€/9jl +0(x'**log ).

i+1 i+1
Observing that
0 . : 0 ‘ o
(11) f > dmyit = D fgt(n)dt -y _om
3/4 2<n< 2R 10g0(%) be=—3[4
I SIS <n<z —3/4 2<n<E

and that by (9)

' N 1
1) 2 e

2N

3/4

_ N 12 | .38 A 5/8
Z+ 2 <@t Z o**(n)logo(n) 0@™),

n<Vz  Vasn<w Va<n<z

we now easily obtain the desired expansion by integrating the right hand
side of the outermost equality in (10). Tndeed, putting B (¢) = ¢(1, D/(t+1),
repeated integration by parts yields

(13) f B)d it = f B(t)a' dt

—3/4 —3/4
E(t)w‘ 0 E'(t)m’ 0 E"(t)m‘ 0
= — 3 & A e
log® li=_s (log®)? {1=—3/4 (log®)® |i—_3/a
(e—1) t 110 —1 a4-1 0
..+x(-1)°‘£————(—);—0— St fE(“)(t)w‘dt.
(log®) =3y (log®)

—3/4
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Since the integral in the last term of (13) is bounded in @, putting a;
= (—1)/7'BY- 1)( )s=0, (13) becomes

0 a
a; @x
14 fE Hattidi = —_— O(—— .
N
The integral of the error term in (10) gives
o . ' 0
o*logw [ afdt = 0("), and ~ [B@)& = 0(1),
—3/4 —3/4

which, combined by (10), (11), (12) and (14), completes the proof of the
Theorem.

The constructive remarks of the referee are greatly appreciated.-
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