SUMS OF QUOTIENTS OF ADDITIVE FUNCTIONS

JEAN-MARIE DE KONINCK

> AbSTRACT. Denote by $\omega(n)$ and $\Omega(n)$ the number of distinct prime factors of n and the total number of prime factors of n, respectively. Given any positive integer α, we prove that
> $\sum_{2 \leqq n \leqq x} \Omega(n) / \omega(n)=x+x \sum_{i=1}^{\alpha} a_{i} /(\log \log x)^{i}+O\left(x /(\log \log x)^{\alpha+1}\right)$,
> where $a_{1}=\sum_{n} 1 / p(p-1)$ and all the other a_{i} 's are computable constants. This improves a previous result of R. L. Duncan.

Denote by $\omega(n)$ and $\Omega(n)$ the number of distinct prime factors of n and the total number of prime factors of n, respectively. R. L. Duncan [3] proved that

$$
\sum_{2 \leqq n \leqq x} \Omega(n) / \omega(n)=x+O(x / \log \log x)
$$

Duncan's result was based on the elementary estimate

$$
\begin{equation*}
\sum_{2 \leqq n \leqq x} 1 / \omega(n)=O(x / \log \log x) \tag{1}
\end{equation*}
$$

In a previous paper [1], we gave estimates of $\sum_{n \leqq x} 1 / f(n)$ for a large class of additive functions $f(n)$ (where \sum^{\prime} denotes summation over those values of n for which $f(n) \neq 0$), which in particular improved considerably the estimate (1). Such sums were further studied by De Koninck and Galambos [2].

In this paper, we prove the following:
Theorem. Let α be an arbitrary positive integer; then

$$
\sum_{n \leqq x}^{\prime} \Omega(n) / \omega(n)=x+x \sum_{i=1}^{\alpha} a_{i} /(\log \log x)^{i}+O\left(x /(\log \log x)^{\alpha+1}\right)
$$

where $a_{1}=\sum_{p} 1 / p(p-1)$ and all the other a_{i} 's are computable constants.
Received by the editors February 16, 1973.
AMS (MOS) subject classifications (1970). Primary 10 H 25.
Key words and phrases. Additive functions, factorization of integers.

Proof. Let t and u be real numbers satisfying $|t| \leqq 1,|u| \leqq 1$. Then, for $\operatorname{Re} s>1$, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{t^{\Omega(n)} u^{\omega(n)}}{n^{s}} & =\prod_{p}\left(1+\frac{t u}{p^{s}}+\frac{t^{2} u}{p^{2 s}}+\frac{t^{3} u}{p^{3 s}}+\cdots\right) \\
& =(\zeta(s))^{t u} \prod_{p}\left(1-\frac{1}{p^{s}}\right)^{t u} \prod_{p}\left(1+\frac{t u}{p^{s}}+\frac{t^{2} u}{p^{2 s}}+\frac{t^{3} u}{p^{3 s}}+\cdots\right) \\
& =(\zeta(s))^{t u} H(t, u ; s)
\end{aligned}
$$

say (Here $\zeta(s)$ denotes the Riemann zeta-function.)
Using a theorem of A. Selberg [5], as we did previously in [1], we obtain that

$$
\sum_{n \leqq x} t^{\Omega(n)} u^{\omega(n)}=(H(t, u ; 1) / \Gamma(t u)) x \log ^{t u-1} x+O\left(x \log ^{t u-2} x\right)
$$

uniformly for $|t| \leqq 1,|u| \leqq 1$, which certainly implies that

$$
\sum_{n \leq x} t^{\Omega(n)} u^{\omega(n)}=\frac{H(t, u ; 1)}{\Gamma(t u)} x \log ^{t u-1} x+O(x / \log x)
$$

$$
\begin{equation*}
=\frac{x}{\log x}\left\{\frac{H(t, u ; 1)}{\Gamma(t u)} \log ^{t u} x+O(1)\right\} \tag{2}
\end{equation*}
$$

uniformly for $|t| \leqq 1,|u| \leqq 1$.
Now differentiating both sides of (2) with respect to t gives

$$
\begin{aligned}
\sum_{n \leqq x} \Omega(n) t^{\Omega(n)-1} u^{\omega(n)}=\frac{x}{\log x}\{ & \log ^{t u} x \frac{d}{d t}\left(\frac{H(t, u ; 1)}{\Gamma(t u)}\right) \\
& \left.+\frac{H(t, u ; 1)}{\Gamma(t u)} \cdot \log ^{t u} x \cdot \log \log x \cdot u+O(1)\right\}
\end{aligned}
$$

which, by setting $t=1$ and dividing both sides by u, becomes

$$
\sum_{n \leqq x} \Omega(n) u^{\omega(n)-1}
$$

$$
\begin{equation*}
=(x / \log x)\left\{G(u) \log ^{u} x+F(u) \log ^{u} x \cdot \log \log x+O(1 / u)\right\} \tag{3}
\end{equation*}
$$

uniformly for $|u| \leqq 1$, where

$$
G(u)=\left.\frac{1}{u} \frac{d}{d t}\left(\frac{H(t, u ; 1)}{\Gamma(t u)}\right)\right|_{t=1}
$$

and

$$
F(u)=\frac{H(1, u ; 1)}{\Gamma(u)}
$$

We now proceed to integrate both sides of (3) with respect to u between $\varepsilon(x)=(\log x)^{-1 / 2}$ and $1(x \geqq 3)$. First we have

$$
\begin{aligned}
\int_{\varepsilon(x)}^{1}\left(\sum_{2 \leqq n \leqq x} \Omega(n) u^{\omega(n)-1}\right) d u & =\sum_{2 \leqq n \leqq x} \Omega(n) \int_{\varepsilon(x)}^{1} u^{\omega(n)-1} d u \\
& =\sum_{n \leqq x} \frac{\Omega(n)}{\omega(n)}-\sum_{n \leqq x} \frac{\Omega(n)}{\omega(n)}(\varepsilon(x))^{\omega(n)} \\
& =\sum_{n \leqq x} \frac{\Omega(n)}{\omega(n)}+O\left(\varepsilon(x) \sum_{2 \leqq n \leqq x} \Omega(n)\right)
\end{aligned}
$$

since $\omega(n) \geqq 1$ for $n \geqq 2$. It can be proved [4] in an elementary way that $\sum_{2 \leqq n \leqq x} \Omega(n)=O(x \log \log x)$. Therefore,
(4)

$$
\begin{aligned}
\int_{\varepsilon(x)}^{1}\left(\sum_{2 \leqq n \leqq x} \Omega(n) u^{\omega(n)-1}\right) d u & =\sum_{n \leqq x} \frac{\Omega(n)}{\omega(n)}+O\left(x(\log \log x)(\log x)^{-1 / 2}\right) \\
& =\sum_{n \leqq x} \frac{\Omega(n)}{\omega(n)}+O\left(\frac{x}{(\log \log x)^{\alpha+1}}\right)
\end{aligned}
$$

On the other hand, as in [1], repeated integration by parts yields

$$
\int_{\ell(x)}^{1} G(u) \log ^{u} x d u
$$

$$
=\log x\left\{\frac{G(1)}{\log \log x}-\frac{G^{\prime}(1)}{(\log \log x)^{2}}+\frac{G^{\prime \prime}(1)}{(\log \log x)^{3}}-\cdots\right.
$$

$$
\left.+\frac{(-1)^{\alpha-1} G^{(\alpha-1)}(1)}{(\log \log x)^{\alpha}}+O\left(\frac{1}{(\log \log x)^{\alpha+1}}\right)\right\}
$$

$$
\begin{align*}
& +\frac{(-1)^{\alpha+1}}{(\log \log x)^{\alpha+1}} \int_{\varepsilon(x)}^{1} G^{(\alpha+1)}(u) \log ^{u} x d u \tag{5}\\
= & \log x\left\{\frac{G(1)}{\log \log x}-\frac{G^{\prime}(1)}{(\log \log x)^{2}}+\cdots\right.
\end{align*}
$$

Similarly we obtain

$$
\left.+\frac{(-1)^{\alpha-1} G^{(\alpha-1)}(1)}{(\log \log x)^{\alpha}}+O\left(\frac{1 .}{(\log \log x)^{\alpha+1}}\right)\right\}
$$

$\log \log x \int_{\varepsilon(x)}^{1} F(u) \log ^{u} x d u$
(6) $\quad=\log x\left\{F(1)-\frac{F^{\prime}(1)}{\log \log x}+\frac{F^{\prime}(1)}{(\log \log x)^{2}}-\cdots\right.$

$$
\left.+\frac{(-1)^{\alpha} F^{(\alpha)}(1)}{(\log \log x)^{\alpha}}+O\left(\frac{1}{(\log \log x)^{\alpha+1}}\right)\right\}
$$

Finally,

$$
\begin{align*}
\frac{x}{\log x} \int_{\varepsilon(x)}^{1} \frac{d u}{u} & =O\left(\frac{x \log \varepsilon(x)}{\log x}\right)=O\left(\frac{x \log \log x}{\log x}\right) \\
& =O\left(\frac{1}{(\log \log x)^{\alpha+1}}\right) \tag{7}
\end{align*}
$$

Putting together relations (3), (4), (5), (6) and (7), we have that

$$
\begin{aligned}
\sum_{n \leqq x} \frac{\Omega(n)}{\omega(n)}= & x\{
\end{aligned} \begin{aligned}
& F(1)+\frac{G(1)-F^{\prime}(1)}{\log \log x}-\frac{G^{\prime}(1)-F^{\prime \prime}(1)}{(\log \log x)^{2}}+\cdots \\
& \\
& \left.+(-1)^{\alpha-1} \frac{G^{(\alpha-1)}(1)-F^{(\alpha)}(1)}{(\log \log x)^{\alpha}}+O\left(\frac{1}{(\log \log x)^{\alpha+1}}\right)\right\}
\end{aligned}
$$

A quite simple computation shows that $F(1)=1$ and that $G(1)-F^{\prime}(1)=$ $\sum_{p} 1 / p(p-1)$, which proves our Theorem.

From the above reasoning it is clear that similar estimates of $\sum_{n \leqq x}^{\prime} g(n) / f(n)$ could be obtained for a larger class of additive functions f and g along the lines of our previous paper [1].

References

1. J. M. De Koninck, On a class of arithmetical functions, Duke Math. J. 39 (1972), 807-818.
2. J. M. De Koninck and J. Galambos, Sums of reciprocal of additive functions, Acta. Arith. 25 (1974), 159-164.
3. R. L. Duncan, On the factorization of integers, Proc. Amer. Math. Soc. 25 (1970), 191-192. MR 40 \#5532.
4. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, London, 1968.
5. A. Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. 18 (1954), 83-87. MR 16, 676.

Département de Mathématiques, Université Laval, G1K 7P4, Québec, Canada

