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SUMS  OF  QUOTIENTS  OF  ADDITIVE FUNCTIONS

JEAN-MARIE  DE   KONINCK

Abstract. Denote by o>(n) and Q(n) the number of distinct

prime factors of n and the total number of prime factors of n,

respectively. Given any positive integer a, we prove that

a

2   Í2(n)/eu(fl) = x + x J a,/(log log x)f + 0(x/(\og log x)«+1),
2StlSl i=l

where öi = 2j> ^lp(p~ ') and a" tne other a¿'s are computable con-

stants. This improves a previous result of R. L. Duncan.

Denote by co(«) and 0(«) the number of distinct prime factors of« and

the total number of prime factors of «, respectively. R. L. Duncan [3]

proved that

2  í¿(n)/w(«) = x + 0(x/log log x).
2Sitái

Duncan's result was based on the elementary estimate

(1) 2  'M«) = 0(x/log log x).
2i«Si

In a previous paper [1], we gave estimates of ^n¿x l¡fon) for a large

class of additive functions fon) (where 2' denotes summation over those

values of« for which fori)^0), which in particular improved considerably

the estimate (1). Such sums were further studied by De Koninck and

Galambos [2].

In this paper, we prove the following:

Theorem.   Let a be an arbitrary positive integer; then

2' O(n)/co(«) = x + x ¿ afilog log x)' + 0(x/(log log x)*+1),
nSl ¿=1

where ax=^v ljpip—1) and all the other a¡s are computable constants.
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Proof.    Let / and u be real numbers satisfying |i|^l, |m|^1. Then,

for Re j> 1, we have

Äl",,ll("U1 T-r/ tU t2U t3U \

n=x      n v   \        p       p        p 1

,   T-r / 1Y" T-r /        tu      t2u      t3u \

= tt(s))tuH(t,u;s),

say (Here £(i) denotes the Riemann zeta-function.)

Using a theorem of A. Selberg [5], as we did previously in [1], we obtain

that

2 rn<")i<<u(") = (H(t, u; l)IT(tu))x log'*"1 x + 0(x log'""2 x),
n^ x

uniformly for |r|^l, |«|^1, which certainly implies that

í     w       = x log      x + 0(x/log x)
«sx r(i«)

(2) x   (f/(f,M;l),   iu 1

=io^l^^rlog x+0(1))'

uniformly for I/|^1, |w|^l.

Now differentiating both sides of (2) with respect to / gives

Vrw v,«»)-! »(»)        x    íi    iu     d ¡H(t,u; l)\
S Ll(n)t u       =- log"x— -

à. l°g*l dt\   T(tu)   J

Hit,u; 1)       tu ,   )
+     „,   x     • log   x • log log x ■ u + Oil) ,

T(tu) J

which, by setting t=l and dividing both sides by u, becomes

2 ¿¿(n)«™'"»-1

^ = (x/log x){G(u)logu x + F(u)logu x • log log x + 0(l/u)}

uniformly for |m[^1, where

m di \    r(íu)

Fiu) =

I d lHit,u; l)\

and

g(l,«;l)

IX«)
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We now proceed to integrate both sides of (3) with respect to u between

e(x) = (logx)_1/2 and 1 (x^3). First we have

P  (   2   iX")"c'(")"1) du =   2   Q(") P ura(")_1 du
Jl(l)\2S.S, / îin^x >»£(;c>

~ Clin)     ^ Q(«)= 2'     - 2'     (£(*))
nHx W(")       náx  «(«)

„T* m(n) \      „drkx        /

since a>(«)^l for «^2. It can be proved [4] in an elementary way that

1s¿n¿m 0(«) = 0(x log log x). Therefore,

(4)

P  (   2   ÍX«)^'»»-1) du = 2' ~ + 0(x(log log x)(log xfm)
Jt(x)\2¿nix 1 »s« m(n)

m        I-x y
■ nsx oj(n) \(log log xr V

On the other hand, as in [1], repeated integration by parts yields

G(«)log" x du
Je(x)

f   G(l) G'(l) G"(l)

Uoglogx      (log log x)2     (log log x)3

+ (-tr-C-"(1)       /-1       »

(log log x)« \(loglogx)a+1/J
(5) (-IY+1      fi

+ —-        G,a+1'(»)log" x dw
(log log x)«+x J.(,)

f    Gjl) G'(l)
= log x -—- + • • •

Uog log x      (log log x)

(log log xr       loogiogxr+vr
Similarly we obtain

log log x      F(u)logu x du
Jc(x)

F'(l) F'(l)
(6)   =iogx|F(D- -y~ +- y

log log x     (log log xy

oglogx)* \(Ioglogx)a+1/J

(-l)*F(g)(l)
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Finally,

x     f1 du /xloge(x)\ _     /xloglogx\

log X Jc(x) U \     log XI \       log X      /

(7) 0Í        l        \
°l(iogiogxrv

Putting together relations (3), (4), (5), (6) and (7), we have that

>  -= x F(l) + - — -— + • • ■
»s, a>(ri)        ( log log x (log log x)¿

-(oí-D/in _   rr(ct),-t G'-"(l) - f'(l) / 1 \)

(log log xy \(iogiogxr+1/J(log log xy \(log log xf

A quite simple computation shows that F(l)=l and that G(l)—F'(l) =

Zj> l/p(p~ O' which proves our Theorem.

From the above reasoning it is clear that similar estimates of

*Z'nsx g(n)lfon) could be obtained for a larger class of additive functions

/and g along the lines of our previous paper [1].
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