


ON A CLASS OF ARITHMETICAL FUNCTIONS

~ JEAN-MARIE De KONINCK

1. Introduction. Let w(n) be the number of distinct prime divisors of n.
Then estimates for .., w(n) are well known [3]. On the other hand, estimates
for D . 1/w(n) were only recently studied [1], [2]. (From here on, the prime
in a sum of the form D, 1/f(n) means that the sum is taken overalln < g
such that f(n) % 0.)

Using Turan’s inequality, R. L. Duncan proves in [1] that

, 1 z )
,é wn) O(log log z

and then uses this result to show that Q(n)/w(n) has average order one, where
2(n) stands for the total number of prime divisors of n.

In this paper, we obtain a much better estimate for Dt e 1/w(n) and we also
obtain estimates for ) /., 1/(f(n))* for a large class of arithmetical functions
{f(n)} and an arbitrary positive integer k.

2. A result of A. Selberg and basic definitions. Before defining our class of
functions, we state a result of A. Selberg [4]. - Restricted to the particular case
needed here the result may be stated as follows.

TamorEM A (Selberg). Let g(s, t) = D=, b.(n)/n’ for Re s = ¢ > 1,
and let Y oy |b.(n)] n™* log®*® 2n be uniformly bounded for [t| < B. Neat, set
E6N'g(s, &) = 2o a.(m)/n’ for o > 1. Then we have Doncz a(m) = (g(1, D/T@®)
z log" 'z + O (z log' ) uniformly for [t < B, z > 2. (Here ¢(s) stands for
the Riemann zeta function.) :

Drrmnirion 1. Let S denote the set of all real-valued arithmetical functions
satisfying the following two conditions.

- () f(r) £ 0= f(n) > 1 for each integer n > 1.
@ T 1=0(2

nse logz
f(n)=0

Drrintrion 2. Given o (from now on, unless otherwise mentioned, « stands
for an arbitrary positive integer), we denote by S, the set of those functions in S
. for which '™ = q,(n) satisfies the conditions of Theorem A, with B = 1 and

D) = (g1, 8)/T@®) e C***[0, 1].
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808 JEAN-MARIE DE KONINCK

Notation. If it exists, the z-th derivative of h(t) with respect to ¢ will be
denoted by % (¢) or (h(£))*.

Dermvirion 3. Given a function f & S, , let D(¢) be the corresponding func-
tion of Definition 2; then for ¢ & (0, 1] set

B(t) = <%Q_)_>“—1)

and 4;(f) = (—1)*'B;(f) fori = 1,2, --- , & + 2. Sometimes we shall v{rrite‘
A for A.(1).

3. Main theorem concerning estimates of Z,K, 1/f(n). We first prove two
lemmmas which we will need in the proof of our main theorem (Theorem 3).

LemMa 1. Given fe S, , with corresponding functions A;(t), |A.(t)] < M/t***
holds uniformly forte (0, 1] and 1 < ¢ < a + 2, with some constant M dependmg
only on f. :

- Proof. 'The proof is immediate from Definition 3.

Lemma 2. Let: < 9 < 1. Let e(@) = (log x)” ) for 2 > 3. Then
if x is sufficiently large, »
log'z log’z
a+2 = " a+2 *

Max

e(x)st<y |

Proof. Let h(f) = (log' z/t***) and suppose that z is large enough so that
e(@) < n < 1. Then . :

log’

a+3

h'(t) = (tloglogz — a — 2).
Setting A'(f) = 0, we get ¢ = (a + 2)/log log z. On the other hand,

h"(t) log’ @ {tloglogz + (tloglogz — a — 2)(¢ log log z — a — 3)},

a+4

which is strictly positive at ¢ = (a + 2)/loglog z. Therefore (f) has a minimum
at t = (@ + 2)/log log = and there are no other local maxima or minima on
[e(x), n]. So A(t) is decreasing between e(z) and (e + 2)/log log and is in-
creasing between (o -+ 2)/log log x and 4 if z is sufficiently large. Therefore

€{z)

] ' L
Max log'z _ ax(log z log a:)

e(z)<t<y ta+2v (e(x))a+2 ’ 77‘”2

But because 9 > %
) e(z)

log™ z
(e ))‘z+2

z)(log! z) < log” x‘

e(z)

= (log




ON A CLASS OF ARITE'METICAL FUNCTIONS ‘809

for z sufficiently large. And obviously, since y <1,

log" z < log’ z

- a+2 !
n

whence the lemma follows.
We are now ready to prove our main result.

TasoreM 3. Let f e 8, ;then

i)
é f(n) = ;Z-l (log 10" z)’ + (log log z)***
Proof. Since fe S, , we have

> ¥ = D)z log' ™ = + R(z, 1)
with R(z, f) = O (2 log' %) uniformly for ¢ & [0, 1] and D(z) £ C**'[0, 1],
Now since f e S, we can write

'6)) > oP#w =3 ¢"™— 3 ™ = D@z log'™ z + Rz, 1) + Ei(x),

nsz nsz nlz
f(n)#0 f(n)=0

with R.(z) = 0 (z/log ). Dividing by ¢ and recalling Definition 3, (1) becomes

(2) Z t!(n)—-l - Bl(t)x log + R(xy t) Rl(x). :

nsz t
} f(n)#0 - .
Let e(z)' = (log 2)~*“***’, as in Lemma 2 and suppose that 2 > 3 (so that
e(z) < 1); then
' o : ‘
@ [ (T roma
o

1 1 1
= f B,()z log' ™ z dt + | R(x, ) dt 4 Rl( ) a,

(=) () ety b

One can easﬂy show that the last two terms on the right of (3) are
O (2/(log log )***). On the other hand,

1 I{n)
@ [ (T o= T (n) -3 (f%
G et o £(n)=0 o .

‘ But since f e S and 0 < e(z) < 1, the last term on the rlght of (4) is
also O (z/(log log z)**"). Therefore, using (3) and (4), we have

®) 2 f—(ln—) = f lm Bi(e log'™" wdt + o(————”—m).

(log log 2

niz -
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Integrating by parts and recalling Definition 3 yields

! - A0 log'™ 2
£~—1 — i >
©) fem Bif log™™ o di = x{gl (log log z)*

1 —ﬁl*fl Auis(d) To "‘xdt}-
<o) (log log £)*** Je, o2\ 108
Using Lemma 1, we see that for 1 <i<L<a+t+1
|Ade@) log* ™~ 2] _ M log"@ 4
(log log 2)° " (@) ***(log log 2)°
- (“1___)
(log log z)***

1

€(z)
Aoni(?) log'™ 2
(log log z)**!

@

On the other hand, from Lemma 1 and Lemma 2, we have

® < [ 1Aun®] log™ 2

1 ‘
f Auns(d) log'™ z di
e{z)

- t—1 -
< M: Max log 2x= M,,logx=M.
TIPS I log =

Finally, observing that 4..,,(1) = O (1) and using (7) and (8), we find that (6)
can be Written. ' . ,

)
= (log log2)* " ((Iog log z)***/}

Putting (5) and (9) together gives our theorem. » '
Observing that w(n) and Q(n) belong to S, for any , we obtain from Theorem 3,
after a simple computation, the following applications that we state as theorems.

© Vf()Bl(t)x‘vlog'"‘xdt=x{za: 4 o

THEOREM 4.

\ 1 = a,; ( z i )
f = , . L O
é o) ~ ° ?:': (log 108 z)* + (log log z)***/’
where a, = 1, @y =1 — p, with
p=v+ 2 {log (1 —p7Y) + p7},

and all the other a.'s are coﬁputable constants. (Here v stands for the Euler con-
stant.) - : : : : :

THEOREM 5, -

(log log z)***

" =1 (log Iog z)

n<z
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whereby, = 1,by=1—p— >, 1/p(p — 1), and all the other b,’s are computable
constants. :

Professor D. Rearick in a private communication mentioned that it would
be interesting if one could use our method to estimate D /.. 1/log d(n), where
d(n) denotes the number of divisors of n. We can prove the following.

THEOREM 6.

) D)

(gt
& log d(n) d(n) =i (log log )t + (log log 2)***

where

_ __r (1 log 2, log g ))
¢ = 1/log 2, Q—logz(l p log2§:<p2 + > + ,

and oll the other c.’s are compuiable constants. (Here p is the constant defined
©n Theorem 4.)
Proof. We have for ¢ > 1 and te]0, 1]

© tlogd(n) tlogZ tlbga
2 =II(1+ pe +—;,—2,—+---)-

nwl n »

Let u = £*°°2 go that { = 4/'°*? and

© logd(n)/leg 2

u °Ef logs/logz
Zl—-~n—— II(1+ +————+---)
= (@) IPI @ —=p™" I,I(' )

= (696, w).

We can easily see that log d(n)/log 2 beiongs to S, for any « and that D(u) =
(9(1, w)/T'(u)), where g(1, u) = ¢ with

o) = Tulog (=97 + log (142 + 1 + 15

log 3/log 2 log 4/lo0g2 )

And Theorem 3 gives us

' 0( =)
2 g d@ d(n) Z (log log 7 T N g og 9™
log 2

where

log 2 g
A1=1: A2=1“P“‘ 1 Z("g'gz'g"""lpggé‘;"'f'),
»

and all the other 4,’s are computable constants, that is,
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sl e 0(___05___-)
Z; log d) ~ © ; (log log 2)° + (log log #)***/’
with the desired ¢/’s. ‘

4. A generalization of the main theorem.

DermiTioN 4. Let S% be the set of all ordered pairs of arithmetical functions
(g, {) which satisfy the following four conditions. :

@ fe 8.
X
® T o - o(10g ).
f(n)=0

@ 2 g9 = 0@).
sinmo : _

@) gln)t’™ = a,(n) satisfies the conditions of Theorem A, with B = 1
and D(t) = (g(1, §)/T®) = c>*'o, 11.

Trom this definition, we observe that if (g, ) = S* , then
> g™ = D()z log'™ = + Oz log?z)

nsz
uniformly for |f| < 1. Therefore to each ordered pair (g, f) ¢ S% we can associate
the function D(f), and using this definition, we define the functions B.() and
4,0, 1 < i < o+ 2,asin Definition 3. We can now state the following theorem.

TaroreM 7. Let (g, f) e S* ; then

’ M = - Ai ) X .
. ; HOBE x ,z..:l (log log 2)’ + 0((10g log x)au) v

Proof. Taking into account Definition 4, we see that the proof is entirely
similar to the one of Theorem 3. —

Observing that (4, w) & S% , where p stands for the Mobius function, the
following application follows from Theorem 7. :

TaEOREM 8.
. o .
v’u(n) _ d; i O( r )
,é o)~ ” ; (log log z)* + (log log z)***/
where

8 ]
2 2

g = _8( _ 1 ).
d w2’ ds p (1 e+ ;p(p_’_ 1)>~‘1

and all the other d.’s are computable constants.
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5. Estimates for ) /., 1/(f(n))"* for an arbitrary positive integer k. In this
section we obtain estimates for D /.. 1/(f(n))* for functions f ¢ S, , with k&
a positive integer, ¥ < a. We first make a definition and state two lemmas that
will be used in the next theorem.

Dzerinirion 5. For ¢ e (0, 1] set
"A;() = A;() and 'B:(t) = B.())

fori=1,2, -+ ,a+2 with A, ;) and B;(f) as in Deﬁmtlon 3. Next, define

-1 /1 (i-§—-1)

B0 = 3 (20

=1

and
Ait) = (D)7 ’B.@)

fori =2,3,:--,a + 2. More generally, for2 <k < « set
i—1 [fk-1 ({~i—-1)
kB-’(t) = Z ( BJ(t))
. ik !

and D
kA-'(t) = (—1)i_k kBi(t)
fori =k k41, ---,a+ 2. We will also write *4, for *4,(1).

Lemma 9. Letfe S, and let k be a positive integer, k < a. To § associate the
corresponding functions *4:()), k < 1 < a + 2. Then
(1) there exists a constant M, depending only on f, such that |FA;(t)] < M/t <
M/t*** uniformly for te (0, 1) and k < 5 <« + 2, and
(2) there exists a constant N, depending only on f, such that 4@ /1) | < N/t*+?
uniformly forte (0, 1] and kb < ¢ < a.

Proof. This lemma is simply a generalization of Lemma 1 and it follows
immediately from Definition 5.

Lemma 10. Letz > 3and e(x) < u < 1. Let B be a positive integer. Then

logz _ log*® 2 ‘log*=z
< -

¢@)Stsu tB (e(@))® U

Proof. Let h(t) = (log' z)/t°. From the proof of Lemma 2, it is easily seen
that the only two possible maxima of h(?) in [e(z), u] are ¢(2) and u. And our
lemma follows from this observation.

We now establish a general formula which wﬂl help us find our estimate

for 2ts. 1/(f(m))*.

TaEOREM 11. Let b e S,, and x > 3. Letk be an arbitrary positive integer,
k< a Then - ol S
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(10): P Goy T Z:,, (log log 2)°

+of

- xlog ' T e '
ua+k+1(10g 10g z a+1) + O($(10g log x)k le(x))‘

uniformly for ue [e(z), 11 :

Proof. The proof is by induction on k. Since f ¢ S, , Equation (2) holds
and we have for e(x) < v <1 s , PR

1) f (3 Pt = f By log' ™ = d
e{z) &(z)

* Rz, 1) ’ @f
+ j;(z) ! dt + Rl(x) j;(z) ¢

F{n)s0
As before, the 1aétb two terms on the right of (11) are easily shown to be
O (ze(z)). Now
1] - () fin)
Py g v ’ (5(97))
[ ema-Zim - & o

nlz nlz
1 (n) #0

i

f(n)

S 7;—@7 + O(ze(®)).-

nszr

fi

Hence: (11) becomes
, _ o ’ B oo
12) ns;l ?(—75 =] B,(H)z log' " x dt + O(xe(;c))..
By repeated integration by parts as in the proof of Theorem 3 and recalling.
Definition 3, we see that SR S

e

= A log' Tl =
=~ (log log x)‘
? 1

4 —x
wor  (log log 2)*7 Je@

(13) f  Bibe logt™* @ dt = 55{ B
A log™ @ |

Aunad) log'™ “dt}-
(log log ©)*** () log @

The following two estimates hold on account of Lemma 1.

e(z)-1 . :
Ao 0872 - 0le), for 1<iSa+]

E Aa+1(v) 10g7—1 T _ O( 1ogg__1 x N ) .. e
(log log ) »**2(log log 2)"*"

And using Lemma 1 and Lemma 10, we also have
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wa® log7 2t < [ |Aeual)] log o dt
elz)

log'z _ (10g )
< ].Og H e(z)saé- ta+2 . O v + O(e(x)):
therefore ‘
 log* Ttz )
T 1 Na+l A a(t) 1 di = O( 0 )
(log log )e*! f +2(?) Og lz v“”(log Tog :v)aﬂ + O(e(x)

. By using these estimates (13) becomes

2 A log"".a;_i_ ( zlog" 'z
= (log log z)° v***(log log

[ Bslog sdt = 2 )) + Oe(@)

e(z)

uniformly for v ¢ [e(z), 1]. Using this relation and Equation (12), we obtain
f(n)

O A og T e O( zlog ' 2 ) 0
Z i =% % Goglogar T O\ (iog og ) T OC@
uniformly for v € [e(z), 1]. Therefore Formula (10) holds for k = 1. The proof
of (10) is now completed by induetion on k.

Let us assume that (10) holds for £ = m, m < a. By the induction hypoth-
esis we have

, o1 "A:@) log™ _
9 TG~ R g+ W)+ W@

with

log" ' &

Wz, v) = O( z )

@ 2) v* " (log log z)***

uniformly for v ¢ [e(z), 1] and W,(z) = O (z(log log )™ 'e(2)). Now dividing
Equatlon (14) by v, integrating both sides between e(2) and u, e(z) < u < 1
and using Definition 5 and Lemma 10 as before, we obtain

I(n) % A(v) -
PZTANCTS =~ log’ d
é (f( )) ;—Zm (IOg ]-Og x) e{x) v 0g r ?)
u—l
+ o( P (izi — ) + O(a(log log 2)"e(@)).

Our theorem will be proved if we can show that

@ 1 13 mAi(v) '-.l’
(15) s-zm (log log 27)‘ e(x) v log v dv

_ & m+1Ar(u) loguwl z logu--l z
a r-zm‘il (log log )" + O( ~ ) + O(e(x)).

w " (log log )" "'




816 - " JEAN-MARIE DE KONINCK

Now observe that the last term in the sum on the left side of relation (15) is
1 f "A®) e '
1 dv.
(log log 2)* Je» ¥ g Td@

Using integration by parts and Lemma 9 and Lemma 10, we see that it can be
shown that this term is

log* ™" 2
O( a+2(10g log )a+1> + O(ﬁ(x))

From this and relation (15), we observe that our theorem will be proved if we
can show that

, A Q)
) T wgies (log log ) fem log™ 2 dv

i=m

@ ™A @) logt ! x ( log" ™ 2
- _ 0
b (log log @) + u***(log log

)) + O(ee).

Integrating by pa,rts for each m < ¢ < @, as in the proof of Theorem 3 we
obtain .

A TA0) log" z dv

LR () e |

©od=m o §=1 (log log x) e(z)

o~ ami mA (v))(¢~:) logv—l
o
+ |-=Zm (=1 (log log )***

a—1 a—f+1 © m -1
(=1 : ( A.-(v))(“ -
ST = 1
+ i (log log z)*™* fe(z) v g = d

S

imm (log 10g 33) e(z)

%

e(z)

=L+ L+1,

séy. We now estimate séparately I, ,I I,and I5 .

a—1 a—i [m {(i—1) i+i—m=—1
=55 (Be)T e

i=m j=1 (log log .T)  letz)
=1 [/m (r—1-1) u
o (1 5 (BT g
— l=m
" (log log z)”

e{z)
by Definition 5, and this equals -

(_l)r-m—l m+lB,-('U) logv—l z
rimi1 (log log )"

_ o m+1A;(’U) logv—l T u
e(z) r-m-}l» (IOg lOg x)r . e(z)> .

@ .m+1Ar(u) logu_1 x -+ O(E(x))

it

rmmtl (log ].Og x)f
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by Lemma 9.
On the other hand, recalling the definition of "*'B,..(v), we have

A e -2

(log log « e(z)
1 v—1 w—m a—1 mB,' WV (a—1) [u
o logTe (e S (_.__(_))
(log log ) P O ross
— ]-og’._l z . a—m(m+1 — mBa(v)) *
" (log log 2)*** (=D* Basil) v @’

using Lemma 9, we see that I, is

log" ™ 2
o) + 0.

Tinally, recalling the' definition of ™*'B,..(v), we have
1 fu wmmt1 (mB (”))wﬂﬂ) v—1
= —_—— 1 o z dvy
. (log log 2)**! Jet =1 2':'. &

1
—‘ (log log z)***

| (_1)a-,,.+,(,;ﬂéa+2~(v) ) <mB;<v))"+ '"B(,;,l(v)) N

again by Lemma 9 we see that I is

log"™ z )
0] .
O(ua+2(log log x)a-}-], + (E(Z))

Putting together these estimates, (15) follows and the theorem is proved.
From Theorem 11 we easily obtain the final desired result.

TreorEM 12. Leffe S. ; then fdr an arbitrary positive integer k < «a

1 d FA, ( x )
[ - ;:+ 0 .
2 o = 2oz logd T \og log ™

Proof. The proof is immediate from Theorem 11 by substltutmg ® =1
in (10) and by observing that

z(log log z)*le(z) = O(—-——x——;;)
‘ (log log )*

We now indicate three applications which follow essentially from Theorem 12
and Definition 5.

TaeoreM 13. Let a > 2; then
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> s =

e; z
n<z =2 (log IOg x) (10g log x)““ !
where e, = 1, e =3 — 2p, and all the other e;’s are computable constants.

TeEOREM 14. Let o > 2; then

ot )
,é w7 ,Z';‘(log logx)'+ (log log z)***/’

where m; = 1, mg = 3 — 2p — 2>, 1/p(p — 1), and all the other m.'s are
computable constants.

TreoREM 15. Let a > 2; then

e e )
é log® d(n) xg(log loga:)‘+ (log log z)***/’

where

1 . _ 1 - _ 2 log2 | logd ))
= Tog?2’ qs_log22'<3' 2o logZE,,:( =+ P’ + ’

p

and all the other q.’s are computable constants.

Finally from an obvious generalization of Theorem 7 and Theorem 12, the
next theorem follows immediately. "

TrEOREM 16. Let & > 2; then

2 Z:gg S D D m—_— O< g ) ,

nse =% (log log z)° (log log z)=**

where

8
2

w

(3—2p+2;5(p—:_—1)),

and all the other r;’s are coniputablé constants.

6 .
T2 = —3, Ty =:
ki
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