On the k-fold iterate of the sum of divisors function

Jean-Marie De Koninck
Département de mathématiques
Université Laval
Québec G1V 0A6
Canada
E-mail: jmdk@mat.ulaval.ca

Imre Kátai
Computer Algebra Department
Eötvös Lorand University
1117 Budapest
Pázmány Péter Sétány I/C
Hungary
E-mail: katai@inf.elte.hu

June 30, 2015

Abstract

Let $\gamma(n)$ stand for the product of the prime factors of n. The index of composition $\lambda(n)$ of an integer $n \geq 2$ is defined as $\lambda(n) = \log n / \log \gamma(n)$ with $\lambda(1) = 1$. Given an arbitrary integer $k \geq 0$ and letting $\sigma_k(n)$ be the k-fold iterate of the sum of divisors function, we show that, given any real number $\varepsilon > 0$, $\lambda(\sigma_k(n)) < 1 + \varepsilon$ for almost all positive integers n.

1 Introduction and notation

Let $\gamma(n)$ stand for the product of the prime factors of the positive integer n. In 2003, De Koninck and Doyon [DD] studied the mean value and various
other properties of the index of composition of an integer, defined for \(n \geq 2 \) by \(\lambda(n) := \frac{\log n}{\log \gamma(n)} \), with \(\lambda(1) = 1 \). Later, others (see [DK], [DKS], [ZZ]) further studied the behaviour of this function. Of particular interest is the result of De Koninck and Luca [DL] who showed that the normal order of \(\lambda(\sigma(n)) \), where \(\sigma(n) \) stands for the sum of the divisors function, is 1.

Given an arbitrary integer \(k \geq 0 \), let \(\sigma_k(n) \) stand for the \(k \)-fold iterate of the \(\sigma(n) \) function, that is, \(\sigma_0(n) = n, \sigma_1(n) = \sigma(n), \sigma_2(n) = \sigma(\sigma_1(n)) \), and so on. Here, given any integer \(k \geq 0 \) and any real \(\varepsilon > 0 \), we show that \(\lambda(\sigma_k(n)) < 1 + \varepsilon \) for almost all positive integers \(n \).

We denote by \(p(n) \) and \(P(n) \) the smallest and largest prime factors of \(n \), respectively. We write \(\Pi(n) \) for the largest prime power dividing \(n \). The letters \(p, q, \pi \) and \(Q \), with or without subscript, will stand exclusively for primes. On the other hand, the letters \(c \) and \(C \), with or without subscript, will stand for absolute constants but not necessarily the same at each occurrence. Moreover, we shall use the abbreviations \(x_1 = \log x, x_2 = \log \log x \), and so on. Finally, given any real number \(x \geq 1 \), we let \(\mathcal{N}_x = \{1, 2, \ldots, \lfloor x \rfloor \} \).

2 Main results

Theorem 2.1. Given a fixed integer \(k \geq 0 \) and an arbitrary real number \(\varepsilon > 0 \),

\[
\frac{1}{x} \#\{n \leq x : \lambda(\sigma_k(n)) \geq 1 + \varepsilon\} \to 0 \quad (x \to \infty).
\]

Remark 2.2. The case \(k = 0 \), namely that the normal order of \(\lambda(n) \) is one, was proved by De Koninck and Doyon [DD]. The case \(k = 1 \) was settled by De Koninck and Luca [DL], who actually proved more, namely that

\[
\frac{1}{x} \sum_{n \leq x} \lambda(\sigma(n)) \to 1 \quad (x \to \infty).
\]

We could not generalize the approach used in [DL] to prove (2.1) for any \(k \geq 2 \). We will therefore use a totally different approach.

On the other hand, letting \(\phi \) stand for the Euler totient function and, given an integer \(k \geq 0 \) and letting \(\phi_k(n) \) stand for the \(k \)-fold iterate of \(\phi(n) \), it turns out that the next theorem is much easier to prove than Theorem 2.1.

Theorem 2.3. Given a fixed integer \(k \geq 0 \) and an arbitrary real number \(\varepsilon > 0 \),

\[
\frac{1}{x} \#\{n \leq x : \lambda(\phi_k(n)) \geq 1 + \varepsilon\} \to 0 \quad (x \to \infty).
\]
Finally, let $\sigma^*(n)$ stand for the sum of the unitary divisors of n, and for each integer $k \geq 0$, let $\sigma_k^*(n)$ stand for the k-fold iterate of the σ^* function. We can then prove the following.

Theorem 2.4. Given a fixed integer $k \geq 0$ and an arbitrary real number $\varepsilon > 0$,

$$\frac{1}{x} \#\{n \leq x : \lambda(\sigma_k^*(n)) \geq 1 + \varepsilon\} \to 0 \quad (x \to \infty).$$

3 Preliminary lemmas

Lemma 3.1. For all integers k and ℓ, let

$$\delta(x, k, \ell) := \sum_{p \leq x \atop p \equiv \ell \pmod{k}} \frac{1}{p}.$$

Then, for $\ell = 1$ or -1, $k \leq x$, and $x \geq 3$, we have

$$\delta(x, k, \ell) \leq \frac{C_1 x_2}{\phi(k)},$$

where $C_1 > 0$ is an absolute constant.

Proof. This is Lemma 2.5 in Bassily, Kátai and Wijsmuller [BKW].

We say that a $k+1$-tuple of primes (q_0, q_1, \ldots, q_k) is a k-chain if $q_{i-1} | q_i + 1$ for $i = 1, 2, \ldots, k$, in which case we write $q_0 \rightarrow q_1 \rightarrow \cdots \rightarrow q_k$. We shall need the following result.

Lemma 3.2. For any fixed prime q_0 and integer $k \geq 1$, there exist absolute constants c_1, \ldots, c_k such that

$$\sum_{q_1 \leq x \atop q_0 \rightarrow q_1} \frac{1}{q_0} \leq \frac{c_1 x_2}{q_0}, \quad \sum_{q_2 \leq x \atop q_0 \rightarrow q_1 \rightarrow q_2} \frac{1}{q_2} \leq \frac{c_2 x_2^2}{q_0}, \quad \cdots, \quad \sum_{q_k \leq x \atop q_0 \rightarrow q_1 \rightarrow \cdots \rightarrow q_k} \frac{1}{q_k} \leq \frac{c_k x_2^k}{q_0}.$$

Proof. Using Lemma 3.1, we have, for some constant $c_1 > 0$,

$$\sum_{q_1 \leq x \atop q_0 \rightarrow q_1} \frac{1}{q_1} \leq \frac{C_1 x_2}{\phi(q_0)} = \frac{C_1 x_2}{q_0 - 1} \leq \frac{c_1 x_2}{q_0},$$

which proves the first inequality. To obtain the second one, observe that, using (3.1), for some constant $c_2 > 0$,

$$\sum_{q_2 \leq x \atop q_0 \rightarrow q_1 \rightarrow q_2} \frac{1}{q_2} = \sum_{q_1 \leq x \atop q_0 \rightarrow q_1} \sum_{q_2 \leq x \atop q_0 \rightarrow q_1 \rightarrow q_2} \frac{1}{q_2} \leq \sum_{q_1 \leq x \atop q_0 \rightarrow q_1} \frac{c_1 x_2}{q_1} = c_1 x_2 \sum_{q_1 \leq x \atop q_0 \rightarrow q_1} \frac{1}{q_1} \leq c_1 x_2 \frac{c_1 x_2}{q_0} = \frac{c_2 x_2^2}{q_0},$$

thus establishing the second inequality. Proceeding in the same manner, the proof of the other inequalities is straightforward. \qed
4 Proof of the theorems

We only prove Theorem 2.1 since the proofs of Theorems 2.3 and 2.4 are similar.

We first introduce the sequence \((w_k)_{k \geq 0} = (w_k(x))_{k \geq 0}\) defined as the real function satisfying

\[
\text{(4.1)} \quad \log w_k(x) = x^{m_k},
\]

where \(0 < m_0 < m_1 < \cdots\) is a suitable sequence of integers, which is to be determined later.

Our plan is to introduce our approach in the cases \(k = 0\) and \(k = 1\) and then to use induction on \(k\).

We first examine the cases \(k = 0\) and \(k = 1\). In the case \(k = 0\), we first write each positive integer \(n \leq x\) as

\[
\sigma_0(n) = n = A_0(n)B_0(n),
\]

where \(B_0(n) := \prod_{q | n} q\) and \(A_0(n) = n/B_0(n)\). Then, let \(Y_x \to \infty\) as \(x \to \infty\) with \(Y_x \leq x_5\) and consider the set

\[
\mathcal{U}_x^{(0)} := \{n \in \mathbb{N} : \mu(B_0(n)) = 0 \text{ or } \Pi(A_0(n)) > Y_x^{Y_x} \text{ or } P(A_0(n)) \geq Y_x\},
\]

where \(\mu\) stands for the Moebius function, observing that

\[
\text{(4.2)} \quad \#\mathcal{U}_x^{(0)} = o(x) \quad (x \to \infty).
\]

Now setting

\[
\mathcal{N}_x^{(1)} := \mathcal{N} \setminus \mathcal{U}_x^{(0)},
\]

we have that, for \(n \in \mathcal{N}_x^{(1)}\), \(B_0(n)\) is squarefree and \((A_0(n), B_0(n)) = 1\), thus allowing us to write

\[
\sigma(n) = \sigma(A_0(n))\sigma(B_0(n)) \quad (n \in \mathcal{N}_x^{(1)}).
\]

To each prime number \(q\), let us associate the strongly additive function \(f_q\) defined on primes \(p\) by

\[
f_q(p) = \begin{cases} k & \text{if } q^k \Vert p + 1, \\ 0 & \text{if } q \nmid p + 1. \end{cases}
\]

Then, we set

\[
s(n) := \prod_{q \leq x_2^2} q^{f_q(n)}
\]
and
\[E(x) := \sum_{n \in \mathcal{N}_x^{(1)}} \log s(n) = \sum_{n \in \mathcal{N}_x^{(1)}} \sum_{q \leq x^2} (\log q) f_q(n). \]

We have, in light of Lemma 3.1,
\[E(x) \leq \sum_{q \leq x^2} (\log q) \sum_{q^k \leq x} \frac{1}{p} \leq C_1 xx_2 \sum_{q \leq x^2} \frac{\log q}{\phi(q^k)} \leq C_2 x x_2 x_3, \]
so that
\[(4.3) \quad s(n) < \exp(x_2 x_3 x_4) \quad \text{for } n \leq x \text{ with at most } o(x) \text{ exceptions.} \]

Letting \(\mathcal{U}_x^{(1)} \) be the set of those integers \(n \in \mathcal{N}_x^{(1)} \) for which \(q^2 \mid \sigma(B_0(n)) \) for at least one prime \(q > x^2 \), we have, using Lemma 3.2,
\[\sum_{n \in \mathcal{N}_x^{(1)}} \sum_{q \leq w_1^{(1)}} \frac{1}{q^2} \leq \sum_{x^2 < q} \frac{x}{\phi(q^2)} + \sum_{x^2 < q} \left(\sum_{p \mid q^2} \frac{x}{p} \right) \]
\[\leq C_3 x x_2 \sum_{q > x^2} \frac{1}{q^2} \leq C_4 x \frac{x}{x_3}, \]
implying that
\[(4.4) \quad \# \mathcal{U}_x^{(1)} = o(x) \quad (x \to \infty). \]

Letting \(w_1 = w_1(x) \) be such that \(\log w_1(x) = x^2 \) (that is, choosing \(m_1 = 2 \) in (4.1)) and setting
\[r(n) := \prod_{q \mid \sigma(B_0(n)) \atop x^2 < q \leq w_1} q, \]
we have, again using Lemma 3.2, that
\[\sum_{n \leq x} \log r(n) \leq \sum_{x^2 < q \leq w_1} (\log q) \sum_{p \leq x} \frac{x}{q \cdot p} \]
\[\leq C_5 x x_2 \sum_{q \leq w_1} \frac{\log q}{q} \leq C_6 x x_2^3. \]

We now set \(\mathcal{N}_x^{(2)} := \mathcal{N}_x^{(1)} \setminus \mathcal{U}_x^{(1)} \) and
\[\mathcal{U}_x^{(2)} := \mathcal{N}_x^{(2)} : s(n) > \exp(x_2 x_3 x_4) \text{ or } r(n) > \exp(x_2^3 x_3) \} \).

Thus, in light of (4.2), (4.4), (4.3) and (4.5), we have that
\[\# \mathcal{U}_x^{(2)} = o(x) \quad (x \to \infty). \]
This motivates the definition

\[N^{(3)}_x := N^{(2)}_x \setminus U^{(2)}_x. \]

Writing

\[
A_1(n) = \sigma(A_0(n)) \cdot s(n) \cdot r(n), \\
B_1(n) = \prod_{q \mid \sigma(B_0(n))} q, \\
\]

we then have that

\[A_1(n) \leq \sigma(A_0(n)) \exp(2x_2^3x_3) \quad (n \in N^{(3)}_x). \tag{4.6} \]

On the other hand,

\[\sigma(A_0(n)) \leq CY_x^Y \log Y_x^{Y_x} \leq x_3 \quad (n \in N^{(3)}_x), \tag{4.7} \]

which implies that \((\sigma(A_0(n)), B_1(n)) = 1\), and since we obviously have \((s(n)r(n), B_1(n)) = 1\), we may conclude that

\[\sigma(n) = A_1(n)B_1(n), \]

where

\[(A_1(n), B_1(n)) = 1, \quad B_1(n) \text{ is squarefree}, \quad B_1(n) \mid \gamma(\sigma(n)). \]

Consequently, in light of (4.6) and (4.7), we have

\[\frac{\sigma(n)}{\gamma(\sigma(n))} \leq A_1(n) \leq x_3 \exp(2x_2^3x_3) \quad (n \in N^{(3)}_x). \tag{4.8} \]

Now, write

\[\lambda(\sigma(n)) = \frac{\log \sigma(n)}{\log \gamma(\sigma(n))} = 1 + \frac{\log(\sigma(n)/\gamma(\sigma(n)))}{\log \gamma(\sigma(n))} = 1 + \theta_n, \tag{4.9} \]

say. Using (4.6) and (4.8), it follows that

\[\theta_n \leq \frac{\log(\sigma(n)/\gamma(\sigma(n)))}{\log(\sigma(n)/A_1(n))} \leq \frac{x_4 + 2x_2^3x_3}{\log \sigma(n) - (x_4 + 2x_2^3x_3)}. \tag{4.10} \]

Since, for \(n \in [x/x_1, x] \), we have that \(\log \sigma(n) > x_1 - x_2 \), it follows from (4.10) that

\[\theta_n \leq \frac{3x_2^2x_3}{x_1} \quad (n \in N^{(3)}_x). \tag{4.11} \]
Using (4.11) in (4.9) proves (2.1) for the case \(k = 1 \).

Having proved our result for the cases \(k = 0 \) and \(k = 1 \), we now use induction. Indeed, assuming that (2.1) is true for \(j = 1, 2, \ldots, k \), we will prove that it holds for \(j = k + 1 \). Then, for \(j = 1, \ldots, k \), we let \(\mathcal{N}_x^{(j)} \) be the sets with \(\mathcal{N}_x \supseteq \mathcal{N}_x^{(1)} \supseteq \mathcal{N}_x^{(2)} \supseteq \cdots \) and

\[
\sigma_j(n) = A_j(n) \cdot B_j(n) \quad (n \in \mathcal{N}_x^{(j)}),
\]

where

\[
B_j(n) = \prod_{q \mid \sigma(B_{j-1}(n))} q \quad \text{and} \quad A_j(n) = \frac{\sigma_j(n)}{B_j(n)},
\]

with \(w_j = w_j(x) \) as in (4.1) and

\[
\sigma(A_j(n)) < w_{j+1} \quad (n \in \mathcal{N}_x^{(j)}),
\]

with

\[
(A_j(n), B_j(n)) = 1, \quad B_j(n) \text{ is squarefree,} \quad p(B_j(n)) > w_j.
\]

We can therefore write

\[
\sigma_k(n) = A_k(n)B_k(n),
\]

where

\[
\sigma(A_k(n)) < w_{k+1}, \quad p(B_k(n)) > w_k,
\]

\(B_k(n) \) is squarefree and \((A_k(n), B_k(n)) = 1 \).

Hence, we have that \(B_k(n) \) is a divisor of \(\gamma(\sigma_k(n)) \) and therefore, following the same argument as in the case \(k = 1 \), we obtain that (2.1) holds for \(k \).

For the case \(k + 1 \), we first write

\[
(4.12) \quad \sigma_{k+1}(n) = \sigma(A_k(n))\sigma(B_k(n))
\]

and set

\[
s_k(n) = \prod_{\pi \mid \sigma(B_k(n))} \pi f_\pi(\sigma(B_k(n))),
\]

\[
r_k(n) = \prod_{\pi \mid \sigma(B_k(n))} \pi,
\]

\[
t_k(n) = \prod_{\pi \mid \sigma(B_k(n))} \pi,
\]

where \(\pi \) ranges over primes not exceeding \(w_{k+1} \).
where, in each of the above products, \(\pi \) runs over primes. First observe that
\[
\sum_{n \in \mathcal{N}_x^{(k)}} \log s_k(n) = \sum_{n \in \mathcal{N}_x^{(k)}} \sum_{\pi \leq x_2^{2(k+1)}} f_\pi(\sigma(B_k(n))) \log \pi \\
= \sum_{\pi \leq x_2^{2(k+1)}} (\log \pi) \sum_{\pi \rightarrow p_1 \rightarrow \cdots \rightarrow p_k+1, p_1 > x_k+1} f_\pi(p_1) \left\lfloor \frac{x}{p_k+1} \right\rfloor \\
\leq C_{k+1} x x_2^{2(k+1)} \sum_{\pi \leq x_2^{2(k+1)}} \frac{\log \pi}{\pi} \\
\leq C_{k+1} x x_2^{2(k+1)} x_3.
\]

It follows from this estimate that
\[
\frac{1}{x} \# \{ n \in \mathcal{N}_x^{(k)} : s_k(n) > e^{\kappa_x x_2^{2(k+1)} x_3} \} \rightarrow 0 \quad (x \rightarrow \infty),
\]
provided \(\kappa_x \) is any function such that \(\kappa_x \rightarrow \infty \) arbitrarily slowly as \(x \rightarrow \infty \).

We will now prove that, as \(x \rightarrow \infty \),
\[
\frac{1}{x} \# \{ n \in \mathcal{N}_x^{(k)} : \text{there exists } \pi > x_2^{2(k+1)} \text{ such that } \pi^2 | \sigma(B_k(n)) \} \rightarrow 0.
\]

Indeed, if \(n \in \mathcal{N}_x^{(k)} \) and \(\pi^2 | \sigma(B_k(n)) \), we then have that there exist two chains of primes, namely
\[
\pi \rightarrow Q_1 \rightarrow \cdots \rightarrow Q_{k+1}, \quad Q_{k+1} | n, \\
\pi \rightarrow p_1 \rightarrow \cdots \rightarrow p_{k+1}, \quad p_{k+1} | n,
\]
from which it follows, using Lemma 3.2, that
\[
\sum_{\pi > x_2^{2(k+1)}} \sum_{n \in \mathcal{N}_x^{(k)}} \frac{1}{\pi^2 | \sigma(B_k(n))} \leq C_{k+1} x x_2^{2(k+1)} \sum_{\pi > x_2^{2(k+1)}} \frac{1}{\pi^2} \ll \frac{x}{x_3},
\]
thus establishing (4.14).

On the other hand,
\[
\sum_{n \in \mathcal{N}_x^{(k)}} \log r_k(n) = \sum_{x_2^{2(k+1)} < \pi < w_{k+1}} (\log \pi) \sum_{\pi \rightarrow p_1 \rightarrow \cdots \rightarrow p_k+1} \left\lfloor \frac{x}{p_k+1} \right\rfloor \\
\leq C_{k+1} x x_2^{2(k+1)} \sum_{\pi < w_{k+1}} \frac{\log \pi}{\pi} \leq C_{k+1} x x_2^{2(k+1)} \log w_{k+1} \\
= C_{k+1} x x_2^{2(k+1)+m_{k+1}}.
\]
which proves that

\[(4.15) \quad \frac{1}{x} \# \left\{ n \in \mathcal{N}_x^{(k)} : r_k(n) > e^{C_x^{2(k+1)+m_{k+1}}} \right\} \to 0 \quad (x \to \infty).\]

Replacing (4.12) by

\[\sigma_{k+1}(n) = \sigma(A_k(n))s_k(n)r_k(n)t_k(n),\]

then, since for all \(n \in \mathcal{N}_x^{(k)},\) we have \(\sigma(A_k(n)) < w_{k+1}\) while \(p(t_k(n)) > w_{k+1}\) and \(P(s_k(n)r_k(n)) < w_{k+1},\) it follows that, choosing

\[A_{k+1}(n) = \sigma(A_k(n))s_k(n)r_k(n),\]
\[B_{k+1}(n) = t_k(n),\]

we have

\[\sigma_{k+1}(n) = A_{k+1}(n)B_{k+1}(n).\]

In light of (4.13), (4.14) and (4.15), we can now say that, with the possible exception of \(o(x)\) integers \(n \leq x\) as \(x \to \infty,\)

\[\sigma(A_{k+1}(n)) < w_{k+2}\]

for a corresponding suitable large integer \(m_{k+2}.\)

Moreover, since \(B_{k+1}(n)\) is squarefree, we obtain that

\[B_{k+1}(n) \mid \gamma(\sigma_{k+1}(n)),\]

and we may then conclude the proof similarly as in the case of \(k,\) thus proving (2.1) for the case \(k+1\) and thereby completing the proof of Theorem 2.1.

Acknowledgements

The research of the first author was partly supported by a grant from NSERC.

References

